[1] G. Cai, Z. Liu, R. Shi, C. He, L. Yang, C. Sun, Y. Chang, Light alkenes from syngas via dimethyl ether, Appl. Catal. A. 125 (1995) 29-38.
[2] M. Xu, J. M. Lunsford, D.W. Goodman, A. Bhattacharya, Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Appl. Catal. A. 149 (1997) 289-301.
[3] T. Takeguchi, K. Yanagisawa, T. Inui, M. Inoue, Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu–Zn–Ga and solid acids
Appl. Catal. A: Gen. 192 (2000) 201-209.
[4] A.M. Arkharov, S.D. Glukhov, L. V. Grekhov, A. A. Zherdev, N. A. Ivashchenko, D. N
[5]. Q. Ge, Y. Huang, F. Qiu, S. Li, Bifunctional catalysts for conversion of synthesis gas to dimethyl ether, Appl. Catal. A. 167 (1998) 23-30.
[6] F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica–titania catalysts, Catal. Commun. 6 (2005) 542-549.
[7] J. Fei, Z. Hou, B. Zhu, H. Lou, X. Zheng, Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts, Appl. Catal. A. 304 (2006) 49-54.
[8] J. Xia, D. Mao, B. Zhang, Q. Chen, Y. Zhang, Y. Tang, Catalytic properties of fluorinated alumina for the production of dimethyl ether, Catal. Commun. 7 (2006) 362-366.
[9] J. Khom-in, P. Praserthdam, J. Panpranot, O. Mekasuwandumrong, Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases, Catal. Commun.
9 (2008) 1955-1958.
[10] R. Vakili, E. Pourazadi, P. Setoodeh, R. Eslamloueyan, M. R. Rahimpour, Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor, Appl. Energ. 88 (2011) 1211–1223.
[11] A. García-Trenco, A. Martínez, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity, Appl. Catal. A. 411-412 (2012) 170– 179.
[12] M. H. Zhang, Z. M. Liu, G. D. Lin, H. B. Zhang, Pd/CNT-promoted Cu ZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2 , Appl. Catal. A. 451 (2013) 28– 35.
[13] Y. Zhang, D. Li, Y. Zhang, Y. Cao, S. Zhang, K. Wang, F. Ding, V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation, Catal. Commun. 55 (2014) 49–52.
[14] F. Frusteri, G. Bonuraa, C. Cannilla, G. D. Ferrantea, A. Aloise, E. Catizzone, M. Migliori, G. Giordano, Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation, Appl. Catal. B 176–177 (2015) 522–531.
[15] Y. J. Lee, J. M. Kim, J. W. Bae, C. H. Shin, K. W. Jun, Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion, Fuel 88 (2009) 1915–1921.
[16]L. Liu, W. Huang, Z. h. Gao, L. h. Yin, Synthesis of AlOOH slurry catalyst and catalytic activity for methanol dehydration to dimethyl ether, J. Ind. Eng. Chem. 18 (2012) 123–127.
[17] Y. Sang, H. Liu, S. He, H. Li, Q. Jiao, Q. Wu, K. Sun, Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether, J. Energ. Chem. 22(2013)769–777.
[18] Z. Zuo, L. Wang, P. Han, W. Huang, Effect of surface hydroxyls on dimethyl ether synthesis
over the γ-Al2O3 in liquid paraffin: a computational study, J. Mol. Model 19 (2013) 4959–4967.
[19] S. M. Solyman, M. A. Betiha, The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether, Egyp. J. Petroleum. 23 (2014) 247-254.
[20] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, The effects of synthesis operation conditions on the properties of modified c-alumina nanocatalysts in methanol dehydration to dimethyl ether using factorial experimental design, Fuel. 139 (2015) 40–50.
[24] Y. Wang, W. J. Tseng, A novel technique for synthesizing nanoshell hollow alumina particles, J. Am. Ceram. Soc. 92 (2009) S32–S37.
[25] R. G. Chaudhuri, S. Paria, Core/Shell nanoparticles: Classes, properties, synthesis mechanisms, characterization and Applications, Chem. Rev. 112 (2012) 2373–2433.
[26] M. S. Sadjadi, N. Rostamizadeh, A new strategy in the synthesis of hollow γ-Al2O3 nanosphere using alginate gel casting process, Res J Biotechnol. 11(4) (2016) 30-35.
[27] M. Firoozi, M. Baghalha, M. Asadi, The effect of micro and nano particle sizes of H ZSM-5 on the selectivity of MTP reaction, Catal. Commun. 10 (2009) 1582–1585.
[28] Z. Zeng, J. Yu, Z. Guo, Preparation of functionalized core-shell alumina/polystyrene composite nanoparticles, Macromol. Chem. Phys. 206 (2005) 1558–1567.
[29] T. Shirai, H. Watanabe, M. Fuji, M. Takahashi, Structural properties and surface characteristics on aluminum oxide powders, Annual Report of the Ceramics Research Laboratory Nagoya Institute of Technology. 9 (2009) 23-31.
[30] F. Arena, R. Dario, A. Parmaliana, A characterization study of the surface acidity of solid catalysts by temperature programmed methods, Appl. Catal. A. 170 (1998) 127-137.
[31] G. R. Moradi, R. Ghanei, F.Yaripour, Determination of the optimum operating conditions for direct synthesis of dimethyl ether from Syngas, Int. J. Chem. Reactor Eng. 5 (2007) A14-19.
[32] M. Fazlollahnejad, M. Taghizadeh, A. Eliassi, G. Bakeri, Experimental study and modeling of an adiabatic fixed-bed reactor for methanol dehydration to dimethyl ether, Chin. J. Chem. Eng. 17 (2009) 630-634.
[33] B.T. Diep, M.S. Wainwright, Thermodynamic equilibrium constants for the methanol-dimethyl ether-water system, J. Chem. Eng. Data. 32 (1987)330–333.
[34] S. S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou, D. I. Kondarides, Methanol dehydration to dimethylether over Al2O3 catalysts, Appl. Catal. B. 145 (2014) 136– 148.