Investigation of Mechanical Properties Prediction of Synthesized Nylon-66/Nano-Calcium Carbonate Composites

Document Type : Research Article


Departments of Chemical & Petroleum Engineering, Yasooj Branch, Islamic Azad University, Yasooj, I.R. Iran


In this research, the influence of adding micro- and nano- sized calcium carbonate powders to nylon-66 was investigated. Mechanical properties of micro and nano- composites, including tensile strength, elongation, and Young’s modulus, before and after ageing, were determined and analyzed. For this purpose, micro- and nano-sized CaCO3 particles were used as fillers to prepare micro-composites (conventional composites) and nano-composites via a polymer solution method. It was observed that tensile strength and young’s modulus increased and elongation decreased with increasing CaCO3 particles in the composites. Also, nano-composites had higher strength and modulus than micro-composites. Theoretical prediction of elastic modulus was carried out using rule of mixtures, Guth, Nicolais–Narkis, Hashin–Shtrikman, and Halpin–Tsai equations. Calculated results show that these equations are not suitable for accurate prediction for the work carried out. However, these models can be used with confidence for the prediction of elastic modulus because experimental results are higher than the calculated values.


[1]  L. Jiang, Lam, Y. C., Tam, K. C., Chua, T. H., Sim, G. W., Ang, L. S.,       Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-  sized calcium carbonate. Polymer, 46 (2005) 243-252.
[2] K. Magniez, Bafekrpour, E., Fox, B. L., Looney, M. G., Structure–Property           Relationships in Nylon 6 Nanocomposites Based on Octaphenyl-Dodecaphenyl– POSS, Montmorillonite, and Their Combinations. Polym. Compos. 36 (2015) 153– 160.
[3]  L. Gonzalez, Lafleur, P., Lozano, T., Morales, A. B., Garcia, R., Mechanical and   thermal properties of polypropylene/montmorillonite nanocomposites using stearic  acid as both an interface and a clay surface modifier. Polym. Compos. 35 (2014) 1–9.
[4]  D. S. Maleki, Barzegar, M. J., Zarrintan, M. H., Adibkia, K. H., Lotfipour, F.,   Calcium Carbonate Nanoparticles; Potential in Bone and Tooth Disorders.  Pharmaceutical Sciences, 20 (2015) 175-182.
[5]  X. Wang, Wu, D., Song, Y., Jin, R., Nano-composites of Poly (vinyl chloride) and Nano-metric Calcium Carbonate Particles: Effects of Chlorinated Polyethylene on   Mechanical Properties, Morphology, and Rheology. Journal of Applied Polymer   Science, 92 (2004) 2714–2723.
[6] C. M. Chen, Cheung, Y. K., PP/CaCo3 Nano-composites. Polymer, 43 (2002) 2981- 2992.
[7]  X. Jia, Herrera-Alonso, M. Mc-Carthy, T. J. surface modification; Part 1: Targeting  the amide groups for selective introduction of reactive functionalities. Polym. 47 (2006) 4916-4924.
[8]  J. Jordan, Karl, I. J., Tannenbaum, R., Sharaf, M. A., Jasiuk, I. Experimental  trends in polymer nanocomposites: A review. Materials Science and Engineering A,  393 (2005) 1-11.
[9]  J.G.A. Ghadami, Idrees, M., Characterization of CaCO3 Nanoparticles  Synthesized by Reverse Microemulsion Technique in Different Concentrations of  Surfactants. Iran. J. Chem. Chem. Eng., 32 (2013) 27-35.
[10]  M. Haghighat, Zadhoush, A., Nouri Khorasani, S., Physicomechanical Properties of   α-Cellulose–Filled Styrene–Butadiene Rubber Composites. Journal of Applied Polymer Science, 96 (2005) 2203–2211.
[11]  Q. Zhang, X., Yu, Z. Z., Xie, X. L., Mai, Y. W. Crystallization and impact energy of polypropylene/CaCO3 nano-composites with nonionic modifier. Polymer, 45 (2004) 5985–5994.
[12] R. Wang, Pyrz, Prediction of the overall moduli of layered silicate-reinforced nano- composites-Part II: Analyses, Composites Science and Technology, 64 (2004) 935– 944.
[13]      V. A. Buryachenko, Roy, A., Lafdi, K., Anderson, K. L., Chellapilla. S., Multi- scale mechanics of nanocomposites including interface. Experimental and numerical  investigation. Compos Sci Technol., 65 (2005) 2435–2465.
[14] X. L. Xie, Liu, Q. X., Li, R. K. Y., Zhou, X. P., Zhang, Q. X., Yu, Z. Z., Mai, Y. W.  Rheological and mechanical properties of PVC/CaCO3 nano-composites prepared by  in situ polymerization. Polymer, 45 (2004) 6665-6673.
[15]  E. D. Bliznakov, White, C. C., Shaw, M. T. Mechanical properties of blends of  HDPE and recycled urea-formaldehyde resin. Journal of Applied Polymer Science, 77 (2000) 3220–3227.
[16] R. Brendan, Thin film testing - ASTM D882, in Annual Book of ASTM Standards. ASTM International Publisher, Philadelphia, 1 (2002) 160-168.
[17]  M. Chen, Feng, Y., Wang, L., Zhang, L. Zhang, J., Study of palladium nano- particles prepared from water-in-oil micro-emulsion. Collo. Surf. A: Physicoch. Eng.     Aspec, 281 (2006) 119–124.
[18] J. Cayer-Barrioz, Ferry, D., Frihi, K., Cavalier, R., Seguela, G. V. Microstructure  and  Mechanical Behavior of Polyamide 66-Precipitated Calcium Carbonate Composites: Influence of the Particle Surface Treatment. Journal of Applied Polymer   Science, 100 (2006) 989–999.
[19]  H. Hanim, Zarina, R., Ahmad, M. Y. F., Mohd, Z. A. Hassan, A. The Effect of Calcium Carbonate Nanofiller on the Mechanical Properties and Crystallisation Behaviour of Polypropylene. Malaysian Polymer Journal, 3 (2008) 38-49.
[20] B. K. Zhu, Xie, S. H., Xu, Z. K., Xu, Y. Y. Preparation and properties of the polyimide/multi-walled carbon nano-tubes (MWNTs). Compos. Sci. Technol, 66 (2006) 548-554.