[1] J.V.F.L. Cavalcanti, C.A.M. Abreu, M.N. Carvalho, M.A.M. Sobrinho, M. Benachour, O.S. Baraúna, Removal of effluent from petrochemical wastewater by adsorp-tion using organoclay, in: V. Patel (Ed.), Petrochemicals, Intech, Rijeka, 2012, pp. 277–294.
[2] Y. Yavuz, A.S. Koparal, Ü. Ö˘gütveren, Treatment of petroleum refinery waste-water by electrochemical methods, Desalination 258 (2010) 201–205.
[3] J.H.B. Rocha, M.M.S. Gomes, N.S. Fernandes, D.R. da Silva, C.A. Martínez-Huitle, Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry, Fuel Process. Technol. 96 (2012) 80–87.
[4] A. Coelho, A.V. Castro, M. Dezotti, G.L. Sant’Anna Jr., Treatment of petroleum refinery sourwater by advanced oxidation processes, J. Hazard. Mater. 137 (2006) 178–184.
[5] E. Brillas, I. Sirés, M.A. Oturan, Chem. Rev. 109 (2009) 6570–6631.
[6] I. Sirés, E. Brillas, Environ. Int. 40 (2012) 212–229.
[7] H.J. Lewerenz, C. Heine, K. Skorupska, N. Szabo, T. Hannappel, T. Vo-Dinh, S.A. Campbell, H.W. Klemm, A.G. Muٌoz, Photo electrocatalysis: principles, nanoemitter applications and routes to bio-inspired systems, Energy Environ. Sci. 3 (2010) 748–760.
[8] Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photo electrocatalytic degradation of phenol, J. Phy. Chem. C 112 (2007) 253– 259.
[9] J. Shang, S. Xie, T. Zhu, J. Li, Solid-state, planar photoelectrocatalytic devices using a nanosized TiO2 layer, Environ. Sci. Technol. 41 (2007) 7876–7880.
[10] Y. Xu, Y. He, X. Cao, D. Zhong, J. Jia, TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: A combination of highly effective thin-film PEC and conventional PEC processes on a single electrode, Environ. Sci. Technol. 42 (2008) 2612–2617.
[11] G. Dai, J. Yu, G. Liu, Synthesis and enhanced visible-light photoelectrocatalytic activity of p–n junction BiOI/TiO2 nanotube arrays, J. Phy. Chem. C 115 (2011) 7339–7346.
[12] G. Jiang, Z. Lin, L. Zhu, Y. Ding, H. Tang, Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films, Carbon 48 (2010) 3369–3375.
[13] A. Wang, Y.Y. Li, A.L. Estrada, Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation, Appl. Catal. B: Environ. 102 (2011) 378–386.
[14] S.J. Yuan, G.P. Sheng, W.W. Li, Z.Q. Lin, R.J. Zeng, Z.H. Tong, H.Q. Yu, Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell, Environ. Sci. Technol. 44 (2010) 5575–5580.
[15] X. Zhao, J. Qu, H. Liu, C. Hu, Photoelectrocatalytic degradation of triazinecontaining azo dyes at c-Bi2MoO6 film electrode under visible light irradiation (k > 420 nm), Environ. Sci. Technol. 41 (2007) 6802–6807.
[16] G. Jiang, Z. Lin, L. Zhu, Y. Ding, H. Tang, Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films, Carbon 48 (2010) 3369–3375.
[17] A. Wang, Y.Y. Li, A.L. Estrada, Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation, Appl. Catal. B: Environ. 102 (2011) 378–386.
[18] S.J. Yuan, G.P. Sheng, W.W. Li, Z.Q. Lin, R.J. Zeng, Z.H. Tong, H.Q. Yu, Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell, Environ. Sci. Technol. 44 (2010) 5575–5580.
[19] X. Zhao, J. Qu, H. Liu, C. Hu, Photoelectrocatalytic degradation of triazinecontaining
azo dyes at c-Bi2MoO6 film electrode under visible light irradiation (k > 420 nm), Environ. Sci. Technol. 41 (2007) 6802–6807.
[20] X. Zhao, Y. Zhu, Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis, Environ. Sci. Technol. 40 (2006) 3367–3372.
[21] M. Panizza, M. Delucchi, G. Cerisola, Electrochemical degradation of anionic surfactants, J. Appl. Electrochem. 35 (2005) 357–361.
[22]P.V. Nidheesh, R. Gandhimathi, Removal of Rhodamine B from aqueous solution using graphite–graphite electro-Fenton system, Desalin. Water Treat. (2013).
[23] A. Ozcan, Y. S_ahin, A.S. Koparal, M.A. Oturan, A comparative study on the efficiency of electro-Fenton process in the removal of propham from water, Appl. Catal. B: Environ. 89 (2009) 620–626.
[24] P.V. Nidheesh, R. Gandhimathi, Comparative removal of Rhodamine B from aqueous solution by electro-Fenton and electro-Fenton-like processes, CLEAN – Soil, Air, Water 41 (2013) 1–6.
[25] L. Cirیaco, C. Anjo, J. Correia, M.J. Pacheco, A. Lopes, Electrochemical degradation of ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta 54 (2009) 1464–1472.
[26] C. Flox, C. Arias, E. Brillas, A. Savall, K. Groenen-Serrano, Electrochemical incineration of cresols: a comparative study between PbO2 and boron-doped diamond anodes, Chemosphere 74 (2009) 1340–1347.
[27] M.A. Rodrigo, P. Caizares, A. Snchez-Carretero, C. Sez, Use of conductivediamond electrochemical oxidation for wastewater treatment, Catal. Today 151 (2010) 173–177.
[28] E. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias, Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes, Chemosphere 79 (2010) 605–612.
[29] E. Tsantaki, T. Velegraki, A. Katsaounis, D. Mantzavinos, Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode, J. Hazard. Mater. 207–208 (2012) 91–96.
[30] M. Panizza, M.A. Oturan, Degradation of alizarin red by electro-Fenton process using a graphite-felt, Electrochim. Acta 56 (2011) 7084–7087.
[31] B. Marselli, J. Garcی[185]a-Gomez, P.A. Michaud, M.A. Rodrigo, Ch. Comninellis, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc. 150 (2003) D79–D83.
[32] M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev. 109 (2009) 6541–6569.
[33] J. Rodriguez, M.A. Rodrigo, M. Panizza, G. Cerisola, Electrochemical oxidation of acid yellow 1 using diamond anode, J. Appl. Electrochem. 39 (2009) 2285–2289.
[34] X. Florenza, A.M.S. Solano, F. Centellas, C.A. Martinez-Huitle, E. Brillas, S. Garcia-Segura, Degradation of the azo dye acid red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products, Electrochim. Acta 142 (2014) 276–288.
[35] I. Sirés, E. Brillas, G. Cerisola, M. Panizza, Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes, J. Electroanal. Chem. 613 (2008) 151–159.
[36] M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochim. Acta 51 (2005) 191–199.
[37] M. Panizza, G. Cerisola, Electrocatalytic materials for the electrochemical oxidation of synthetic dyes, Appl. Catal. B – Environ. 75 (2007) 95–101.
[38] N. Oturan, E. Brillas, M.A. Oturan, Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode, Environ. Chem. Lett. 10 (2012) 165–170.
[39] G.D. Fang, D.D. Dionysiou, S.R. Al-Abed, D.M. Zhou, Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs, Appl. Catal. B – Environ. 129 (2013) 325–332.