Abattoirs have been identified as significant sources of aromatic hydrocarbons, particularly polycyclic aromatic hydrocarbons (PAHs), due to the combustion-intensive nature of meat processing activities, especially in developing countries such as Nigeria. These compounds are recognized as persistent environmental pollutants with carcinogenic, mutagenic, and toxicological effects, thereby posing substantial risks to both human health and ecological systems. Both passive and active air sampling techniques were employed to determine particulate-bound PAHs. A fabricated polyurethane foam (PUF) disk sampler, an air quality monitor, and Gas Chromatography-Mass Spectrometry analysis were used. The particle-bound polycyclic hydrocarbons PM2.5, PM10, and TSP measured at the abattoirs in Kwara State, Nigeria were 121-1557, 139-1744, and 265-3301 µg.m-3, respectively, for the Sobi abattoir, and 165.25-684.5, 196.25-726.25, and 265-1178.25 µg.m-3 for the Ipata abattoir. The toxicity potential (TP) for the particulate emissions at the Sobi abattoir ranged between 0.47 and 30.54, while the Ipata abattoir ranged between 0.54 and 18.75. The incremental cancer inhalation risk assessment (ILRC) for exposure within the Sobi and Ipata abattoirs was estimated at 3.319 × 10-7 and 5.01 × 10-7,respectively. The adverse non-cancer health risk was 1.481 and 0.300 for Sobi and Ipata, respectively. The study confirms that PAH emissions from these abattoirs pose measurable non-cancer health risks to exposed vulnerable populations and recommends adopting cleaner technologies, such as a solar or biogas-heated scalding system, to mitigate emisspons and protect the vulnerable.
Graphical Abstract
Highlights
High PAH concentrations were detected in Ilorin abattoir environments.
Assessed concentrations of particulate matter (PM2.5, PM10, TSP) bound in PAHs.
Evaluated toxicity potentials (TP), incremental lifetime cancer risk (ILCR), and non-cancer hazard quotient (HQ).
Proposed mitigation strategies to reduce PAHs emissions in Nigeria’s abattoirs.
Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813
Sahoo, B. M., Ravi Kumar, B. V., Banik, B. K., & Borah, P. (2020). Polyaromatic Hydrocarbons (PAHs): Structures, Synthesis and Their Biological Profile. Current Organic Synthesis, 17(8), 625-640. https://doi.org/10.2174/1570179417666200713182441
Hrdina, A. I., Kohale, I. N., Kaushal, S., Kelly, J., Selin, N. E., Engelward, B. P., & Kroll, J. H. (2022). The Parallel Transformations of Polycyclic Aromatic Hydrocarbons in the Body and in the Atmosphere. Environmental Health Perspectives, 130(2), 25004. https://doi.org/10.1289/EHP9984
Zhang, Z., Li, Y., Zhang, X., Zhang, H., & Wang, L. (2021). Review of Hazardous Materials in Condensable Particulate Matter. Fuel Processing Technology, 220, 106892. https://doi.org/10.1016/j.fuproc.2021.106892
Gheni, S. A., Ali, M. M., Ta, G. C., Harbin, H. J., & Awad, S. A. (2023). Toxicity, Hazards, and Safe Handling of Primary Aromatic Amines. ACS Chemical Health & Safety, 31(1), 8-21. https://doi.org/10.1021/acs.chas.3c00073
Manzetti, S. (2012). Ecotoxicity of Polycyclic Aromatic Hydrocarbons, Aromatic Amines, and Nitroarenes through Molecular Properties. Environmental chemistry letters, 10(4), 349-361. https://doi.org/10.1007/s10311-012-0368-0
Wang, H., Chu, X., Du, P., He, H., He, F., Liu, Y., Wang, W., Ma, Y., Wen, L., Wang, Y., Oz, F., & Abd El-Aty, A. M. (2023). Unveiling Heterocyclic Aromatic Amines (HAAs) in Thermally Processed Meat Products: Formation, Toxicity, and Strategies for Reduction - A Comprehensive Review. Food Chemistry: X, 19, 100833. https://doi.org/10.1016/j.fochx.2023.100833
Ungvari, Z., Fekete, M., Varga, P., Lehoczki, A., Munkácsy, G., Fekete, J. T., Bianchini, G., Ocana, A., Buda, A., Ungvari, A., & Győrffy, B. (2025). Association between Red and Processed Meat Consumption and Colorectal Cancer Risk: A Comprehensive Meta-Analysis of Prospective Studies. Geroscience, 47(3), 5123-5140. https://doi.org/10.1007/s11357-025-01646-1
Berríos-Rolón, P. J., Cotto, M., & Márquez, F. (2025). Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Impacts. Toxics, 13(4), 321. https://doi.org/10.3390/toxics13040321
Sawyer, W. E., Amabie, T., Sylva, L., Nwodo, M. U., & Etim, N. G. (2024). Polycyclic Aromatic Hydrocarbons as Ambient Air Pollutants. In Izah, S. C., Ogwu, M. C., Shahsavani, A. (Eds), Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts (pp. 313-340). Cham: Springer Nature Switzerland. https://doi.org/10.1007/698_2024_1134
Odubo, T. C., & Kosoe, E. A. (2024). Sources of Air Pollutants: Impacts and Solutions. In Izah, S. C., Ogwu, M. C., Shahsavani, A. (Eds), Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts (pp. 75-21). Cham: Springer Nature Switzerland. https://doi.org/10.1007/698_2024_1127
Cui, H., Lu, Y., Zhou, Y., He, G., Li, Q., Liu, C., Wang, R., Du, D., Song, S. & Cheng, Y. (2022). Spatial Variation and Driving Mechanism of Polycyclic Aromatic Hydrocarbons (PAHs) Emissions from Vehicles in China. Journal of Cleaner Production, 336, 130210. https://doi.org/10.1016/j.jclepro.2021.130210
Szramowiat-Sala, K., Marczak-Grzesik, M., Karczewski, M., Kistler, M., Giebl, A. K., & Styszko, K. (2025). Chemical Investigation of Polycyclic Aromatic Hydrocarbon Sources in an Urban Area with Complex Air Quality Challenges. Scientific Reports, 15(1), 6987. https://doi.org/10.1038/s41598-025-91018-8
Yan, J., Wang, X., Gong, P., & Wang, C. (2021). Nitrated Polycyclic Aromatic Compounds in the Atmospheric Environment: A Review. Critical Reviews in Environmental Science and Technology, 51(11), 1159-1185. https://doi.org/10.1080/10643389.2020.1748486
Hu, W., Liu, D., Su, S., Ren, L., Ren, H., Wei, L., Yue, S., Xi, Q., Zhang, Z., Wang, Z., Yang, N., Wu, L., Deng, J., Qi, U., & Fu, P. (2021). Photochemical Degradation of Organic Matter in the Atmosphere. Advanced Sustainable Systems, 5(11), 2100027. https://doi.org/10.1002/adsu.202100027
Adegbola, P. I., & Adetutu, A. (2024). Genetic and Epigenetic Modulations in Toxicity: The Two-Sided Roles of Heavy Metals and Polycyclic Aromatic Hydrocarbons from the Environment. Toxicology Reports, 12, 502. https://doi.org/10.1016/j.toxrep.2024.04.010
Bălă, G. P., Râjnoveanu, R. M., Tudorache, E., Motișan, R., & Oancea, C. (2021). Air Pollution Exposure - The (in) Visible Risk Factor for Respiratory Diseases. Environmental Science and Pollution Research, 28(16), 19615-19628. https://doi.org/10.1007/s11356-021-13208-x
Kumari, K., Swamy, S., & Singh, A. (2021). Global Monitoring Plan on Persistent Organic Pollutants (POPs). In Persistent Organic Pollutants (pp. 227-252). CRC Press. https://doi.org/10.1201/9781003046806-9
Vaye, O., Ngumbu, R. S., & Xia, D. (2022). A Review of the Application of Comprehensive Two-Dimensional Gas Chromatography MS-Based Techniques for the Analysis of Persistent Organic Pollutants and Ultra-Trace Level of Organic Pollutants in Environmental Samples. Reviews in Analytical Chemistry, 41(1), 63-73. https://doi.org/10.1515/revac-2022-0034
González, L. T., Hernández-Romero, I. M., Mendoza, A., Ramirez, A. I., Mancilla, Y., Kharissov, B., Pérez-Rodríguez, M., Barbosa, J. M. A., Serna, D. L., Kharissova, O., Nucamendi, A., Paéz, J. A. D., & Longoria, F. E. (2024). Source Attribution, Health Risk Analysis, and Policy Implications of PAHs and NPAHs in PM in Northern Mexico. Scientific Reports, 14(1), 31823. https://doi.org/10.1038/s41598-024-83142-8
Eghomwanre, A. F., & Edomwonyi, G. O. (2024). Particulate Matter Concentrations and Health Risks Associated with Cow Hides Singeing in Abattoirs in Benin City, Nigeria. Journal of Air Pollution and Health, 9(4), 445-466. https://doi.org/10.18502/japh.v9i4.17648
Mallah, M. A., Changxing, L., Mallah, M. A., Noreen, S., Liu, Y., Saeed, M., Xi, H., Ahmed, B., Feng, F., Mirjat, A. A., Wang, W., Jabar, A., Naveed, M., Li, J. H., & Zhang, Q. (2022). Polycyclic Aromatic Hydrocarbon and Its Effects on Human Health: An Overview. Chemosphere, 296, 133948. https://doi.org/10.1016/j.chemosphere.2022.133948
National Population Commission (NPC), (2006). Nigerian Population Census Report. National Population Commission, Abuja, 21-27.
Olubanjo, O. O. (2019). Climate Variation Assessment Based on Rainfall and Temperature in Ilorin, Kwara State, Nigeria. Applied Research Journal of Environmental Engineering, 2(1), 1-18. https://doi.org/10.47721/arjee20190201018
Jeong, Cheol-heon, Sabina Halappanavar, Narumol Jariyasopit, and Yushan Su. (2019). Polyurethane Foam (PUF) Disk Samplers for Measuring Trace Metals in Ambient Air. Rapid-communication. Environmental Science & Technology Letters 6, 545-50. https://doi.org/10.1021/acs.estlett.9b00420
Abad, E., Abalos, M., & Fiedler, H. (2022). Air Monitoring with Passive Samplers for Dioxin-Like Persistent Organic Pollutants in Developing Countries (2017–2019). Chemosphere, 287(part 1), 131931. https://doi.org/10.1016/j.chemosphere.2021.131931
Fiedler, H., de Boer, J., & Abad, E. (2024). Persistent Organic Pollutants in Air Across the Globe Using a Comparative Passive Air Sampling Method. TrAC Trends in Analytical Chemistry, 171, 117494. https://doi.org/10.1016/j.trac.2023.117494
Coccia, M. (2021). The Effects of Atmospheric Stability with Low Wind Speed and of Air Pollution on the Accelerated Transmission Dynamics of COVID-19. International Journal of Environmental Studies, 78(1), 1-27. https://doi.org/10.1080/00207233.2020.1802937
Muhibbu-din, Ismail. (2020). Ozone Formation Potential and Toxicity Potential of VOCs Emissions from a Nigerian Petroleum Products Depot. Anthropogenic Pollution, 4(2), 8-14. https://doi.org/10.22034/AP.2020.1899618.1064
Kolawole, T. O., & Olatunji, A. S. (2023). Assessment of Concentration of the Potentially Toxic Elements and Associated Human Health Risk from Particulate Matter Exposure Along Road Intersections in Ibadan, Southwestern Nigeria. Discover Environment, 1(1), 3. https://doi.org/10.1007/s44274-023-00005-1
Abulude, F. O., Arifalo, K. M., Adamu, A., Kenni, A. M., Akinnusotu, A., Oluwagbayide, S. D., & Acha, S. (2022). Indoor Air Quality (PM5 and PM10) and Toxicity Potential at a Commercial Environment in Akure, Nigeria. Environmental Sciences Proceedings, 24(1), 8. https://doi.org/10.3390/ECERPH-4-13103
Petit, P., Maître, A., & Bicout, D. J. (2021). A consensus approach for estimating health risk: Application to inhalation cancer risks. Environmental Research, 196, 110436. https://doi.org/10.1016/j.envres.2020.110436
Halfadji, A., Naous, M., Bettiche, F., & Touabet, A. (2021). Human Health Assessment of Sixteen Priority Polycyclic Aromatic Hydrocarbons in Contaminated Soils of Northwestern Algeria. Journal of Health and Pollution, 11(31), 210914. https://doi.org/10.5696/2156-9614-11.31.210914
Adesina, O. A., Nwogu, A. S., & Sonibare, J. A. (2021). Indoor Levels of Polycyclic Aromatic Hydrocarbons (PAHs) from Environment Tobacco Smoke of Public Bars. Ecotoxicology and Environmental Safety, 208, 111604. https://doi.org/10.1016/j.ecoenv.2020.111604
Food Safety and Inspection Branch (2018). Provincial Abattoirs Code of Practice, Ministry of Agriculture, Canada. Retrieved from https://coilink.org/20.500.12592/5p6btfj.
Muhibbudin, I. E , Ifeoluwa, T. Agnes and Kehinde, P. David (2025). Toxicity and carcinogenic potentials of particulate-bound polycyclic aromatic hydrocarbons emitted at the epicenter of major abattoirs in Ilorin Metropolis, Kwara State, Nigeria. Journal of Particle Science and Technology, 11(1), 39-51. doi: 10.22104/jpst.2025.7900.1284
MLA
Muhibbudin, I. E, , Ifeoluwa, T. Agnes, and Kehinde, P. David. "Toxicity and carcinogenic potentials of particulate-bound polycyclic aromatic hydrocarbons emitted at the epicenter of major abattoirs in Ilorin Metropolis, Kwara State, Nigeria", Journal of Particle Science and Technology, 11, 1, 2025, 39-51. doi: 10.22104/jpst.2025.7900.1284
HARVARD
Muhibbudin, I. E, Ifeoluwa, T. Agnes, Kehinde, P. David (2025). 'Toxicity and carcinogenic potentials of particulate-bound polycyclic aromatic hydrocarbons emitted at the epicenter of major abattoirs in Ilorin Metropolis, Kwara State, Nigeria', Journal of Particle Science and Technology, 11(1), pp. 39-51. doi: 10.22104/jpst.2025.7900.1284
CHICAGO
I. E Muhibbudin , T. Agnes Ifeoluwa and P. David Kehinde, "Toxicity and carcinogenic potentials of particulate-bound polycyclic aromatic hydrocarbons emitted at the epicenter of major abattoirs in Ilorin Metropolis, Kwara State, Nigeria," Journal of Particle Science and Technology, 11 1 (2025): 39-51, doi: 10.22104/jpst.2025.7900.1284
VANCOUVER
Muhibbudin, I. E, Ifeoluwa, T. Agnes, Kehinde, P. David Toxicity and carcinogenic potentials of particulate-bound polycyclic aromatic hydrocarbons emitted at the epicenter of major abattoirs in Ilorin Metropolis, Kwara State, Nigeria. Journal of Particle Science and Technology, 2025; 11(1): 39-51. doi: 10.22104/jpst.2025.7900.1284