[3] Reynolds, R. R., & Kiker, R. D. (2003). Produced Water and Associated Issues. Oklahoma Geological Survey, Open file report.
[4] Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J., Jr. (2004). A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane. US Department of Energy, Argonne National Laboratory, IL (US).
[5] Bakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental Impacts of Produced Water and Drilling Waste Discharges from the Norwegian Offshore Petroleum Industry.
Marine Environmental Research, 92, 154-169.
https://doi.org/10.1016/j.marenvres.2013.09.012
[6] Dudek, M., Vik, E. A., Aanesen, S. V., & Øye, G. (2020). Colloid Chemistry and Experimental Techniques for Understanding Fundamental Behaviour of Produced Water in Oil and Gas Production. Advances in Colloid and Interface Science, 276, 102-105.
[7] Sirivedhin, T., McCue, J., & Dallbauman, L. (2004). Reclaiming Produced Water for Beneficial Use: Salt Removal by Electrodialysis. Journal of Membrane Science, 243(1-2), 335-343.
[8] Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Awang Biak, D. R., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of Technologies for Oil and Gas Produced Water Treatment. Journal of Hazardous Materials, 170(2-3), 530-551.
[9] Igunnu, E. T., & Chen, G. Z. (2014). Produced Water Treatment Technologies. International Journal of Low-Carbon Technologies, 9(3), 157-177.
[10] Neff, J., Lee, K., & DeBlois, E. M. (2011). Produced Water: Overview of Composition, Fates, and Effects.; In Lee, K., Neff, J. (Eds.), Produced Water (pp. 3-54) Springer, New York, NY.
[11] Mcgowin, C., Weintraub, L., & Difilippo, M. (2006).
Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities. EPRI, Palo Alto, CA and USDOE, Morgantown, WV: 2006.1016458.
https://doi.org/10.2172/935386
[12] Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced Water Characteristics, Treatment and Reuse: A Review. Journal of Water Process Engineering, 28, 222-239.
[13] Saththasivam, J., Loganathan, K., & Sarp, S. (2016). An Overview of Oil-Water Separation Using Gas Flotation Systems. Chemosphere, 144, 671-680.
[14] Hosny. A. Y. (1996). Separating Oil from Oil-Water Emulsions by Electroflotation Technique. Separations Technology, 6(1), 9-17.
[15] Abdel Khalek, M. A., El-Hosiny, F. I., Selim, K. A., & Osama, I. (2017). Produced Water Treatment Using a New Designed Electroflotation Cell.
International Journal of Research in Industrial Engineering,
6(4), 328-338.
https://doi.org/10.22105/riej.2017.100959.1022
[17] Etchepare, R. (2017). Separation of Emulsified Crude Oil in Saline Water by Dissolved Air Flotation with Micro and Nanobubbles. Separation and Purification Technology. 186, 326-332.
[18] Wang, C., Lü, Y., Song, C., Zhang, D., Rong, F., & He, L. (2022). Separation of Emulsified Crude Oil from Produced Water by Gas Flotation: A Review. Science of The Total Environment, 845, 157304.
[19] Moosai, R. & Dawe, R. A. (2003). Gas Attachment of Oil Droplets for Gas Flotation for Oily Wastewater Cleanup. Separation and Purification Technology, 33(3), 303-314.
[20] Grattoni, C., Moosai, R., & Dawe, R. A. (2003). Photographic Observations Showing Spreading and Non-Spreading of Oil on Gas Bubbles of Relevance to Gas Flotation for Oily Wastewater Cleanup. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 214(1-3), 151-155.
[21] Eftekhardadkhah, M., Aanesen, S. V., Rabe, K., & Øye, G. (2015). Oil Removal from Produced Water during Laboratory- and Pilot-Scale Gas Flotation: The Influence of Interfacial Adsorption and Induction Times. Energy & Fuels, 29(11), 7734-7740.
[22] Painmanakul, P. , Sastaravet, P., Lersjintanakarn, & S., Khaodhiar, S. (2010). Effect of Bubble Hydrodynamic and Chemical Dosage on Treatment of Oily Wastewater by Induced Air Flotation (IAF) Process.
Chemical Engineering Research and Design, 88(5-6), 693-702.
https://doi.org/10.1016/j.cherd.2009.10.009
[23] Naseri, A., GhareSheikhloo, A. A., Kamari, A., Hemmati-Sarapardeh, A., & Mohammadi, A. H. (2015). Experimental Measurement of Equilibrium Interfacial Tension of Enriched Miscible Gas-Crude Oil Systems.
Journal of Molecular Liquids, 211, 63-70.
https://doi.org/10.1016/j.molliq.2015.05.008
[24] Rezaei, F., Rezaei, A., Jafari, S., Hemmati-Sarapardeh, A., Mohammadi, A. H., & Zendehboudi, S. (2021). On the Evaluation of Interfacial Tension (IFT) of CO
2-Paraffin System for Enhanced Oil Recovery Process: Comparison of Empirical Correlations, Soft Computing Approaches, and Parachor Model.
Energies, 14(11), 3045.
https://doi.org/10.3390/en14113045
[25] Eftekhardadkhah, M., & Øye, G. (2013). Induction and Coverage Times for Crude Oil Droplets Spreading on Air Bubbles.
Environmental Science & Technology, 47(24), 14154-14160.
https://doi.org/10.1021/es403574g
[26] Nenningsland, A. L., Simon, S., & Sjöblom, J. (2014). Influence of Interfacial Rheological Properties on Stability of Asphaltene-Stabilized Emulsions. Journal of Dispersion Science and Technology, 35(2), 231-243.
[27] Bertheussen, A., Simon, S., & Sjöblom, J. (2017). Equilibrium Partitioning of Naphthenic Acids and Bases and Their Consequences on Interfacial Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 45-56.
[28] Fanaie, V. R., & Khiadani, M. (2020). Effect of Salinity on Air Dissolution, Size Distribution of Microbubbles, and Hydrodynamics of a Aissolved Air Flotation (DAF) System.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 591(1-2), 124547.
https://doi.org/10.1016/j.colsurfa.2020.124547
[29] Chiesa, M., Garg, J., Kang, Y. T., & Chen, G. (2008). Thermal Conductivity and Viscosity of Water-in-Oil Nanoemulsions.
Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 326(1-2), 67-72.
https://doi.org/10.1016/j.colsurfa.2008.05.028
[30] Van Le, T., Imai, T., Higuchi, T., Yamamoto, K., Sekine, M., Doi, R., Thanh Vo, H., & Wei, J. (2013). Performance of Tiny Microbubbles Enhanced with "Normal Cyclone Bubbles" in Separation of Fine Oil-in-Water Emulsions. Chemical Engineering Science, 94, 1-6.
[31] Al-Dulaimi, S. L. & Al-Yaqoobi, A. M. (2021). Separation of Oil/Water Emulsions by Microbubble Air Flotation. IOP Conference Series: Materials Science and Engineering, 1076, 012030.
[32] Rajak, V. K., Relish, K. K., Kumar, S., & Mandal, A. (2015). Mechanism and Kinetics of Separation of Oil From Oil-in-Water Emulsion by Air Flotation. Petroleum Science and Technology, 33(23-24), 1861-1868.
[33] Chakibi, H., Hénaut, I., Salonen, A., Langevin, D., & Argillier, J.-F. (2018). Role of Bubble-Drop Interactions and Salt Addition in Flotation Performance. Energy & Fuels, 32(3), 4049-4056.
[34] Chebbi, S., Allouache, A., Schwarz, M., Belkacemi, H. & Merabet, D. (2019). Treating Produced Water Using Induced Air Flotation: The Effect of Ethanol on Conditioning and Flotation of PAHs in the Presence of Tween 80.
Polish Journal of Environmental Studies,
28(4), 2079-2087.
https://doi.org/10.15244/pjoes/89985
[35] da Silva, S. S., Chiavone-Filho, O., Barros Neto, E. L. D., & Foletto, E. L. (2015). Oil Removal of Oilfield-Produced Water by Induced Air Flotation Using Nonionic Surfactants.
Desalination and Water Treatment, 56(7), 1802-1808.
https://doi.org/10.1080/19443994.2014.958103
[36] Shen, W. Mukherjee, D., Koirala, N., Hu, G., Lee, K., Zhao, M., & Li, J. (2022). Microbubble and Nanobubble-Based Gas Fotation for Oily Wastewater Treatment: A Review.
Environmental Reviews, 30, 359-379.
https://doi.org/10.1139/er-2021-0127