Review of advanced materials technology for targeted and sustained drug delivery with the aim of developing a roadmap

Document Type : Review Article

Author

Department of Physics, Faculty of Basic Sciences, Imam Ali Officers' University, Tehran, Iran

Abstract

The growing complexity of modern medicine necessitates advanced drug delivery systems (DDS) that surpass the limitations of conventional methods in safety, efficacy, and personalization. This review examines innovative materials, including lipid nanoparticles, hydrogels, dendrimers, metal–organic frameworks, exosomes, silica nanoparticles, and stimuli-responsive polymers, and their potential to achieve targeted, controlled, and responsive drug release. Their biocompatibility, drug-loading efficiency, targeting specificity, and translational readiness have been assessed based on recent literature and clinical data. Furthermore, a five-phase roadmap (2025–2045) has been proposed, outlining the anticipated evolution of drug delivery systems from material optimization and hybrid nanosystems to AI-driven design, clinical translation, and sustainable bio-integrated platforms. Emerging technologies, like CRISPR-gated hydrogels, magnetothermal brain tumor delivery, and exosome-based RNA therapies, are highlighted as key drivers of future innovation. Despite significant promise, challenges remain in regulatory alignment, scalability, and long-term safety. This review underscores the need for interdisciplinary collaboration and strategic investment to translate laboratory breakthroughs into real-world solutions, thereby paving the way for precision medicine, equitable access, and sustainable therapeutic delivery.

Graphical Abstract

Review of advanced materials technology for targeted and sustained drug delivery with the aim of developing a roadmap

Highlights

  • Emerging biomaterials enable precise, controlled drug delivery with reduced toxicity.
  • DDS roadmap (2025–2045) outlines innovation phases from lab discovery to real-world use.
  • Hybrid systems and AI tools enhance targeting, release control, and therapeutic response.
  • CRISPR-gated hydrogels and smart exosomes unlock new frontiers in gene-based therapy.
  • Scalable, sustainable DDS aim to ensure equitable access to advanced medical treatments.

Keywords


Copyright © 2025 The Author(s). Published by IROST.

  1. Ezike, T. C., Okpala, U. S., Onoja, U. L., Nwike, C. P., Ezeako, E. C., & Okpara, O. J., et al. (2023). Advances in Drug Delivery Systems, Challenges and Future Directions. Heliyon, 9(6), e17488. https://doi.org/10.1016/j.heliyon.2023.e17488
  2. Salahshoori, I., Golriz, M., Nobre, M. A. L., Mahdavi, S., Eshaghi Malekshah, R., & Javdani-Mallak, A., et al. (2024). Simulation-Based Approaches for Drug Delivery Systems: Navigating Advancements, Opportunities, and Challenges. Journal of Molecular Liquids, 395, 123888. https://doi.org/10.1016/j.molliq.2023.123888
  3. Homayun, B., Lin, X., & Choi, H. J. (2019). Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics, 11(3), 129. https://doi.org/10.3390/pharmaceutics11030129
  4. Cano-Vega, M. A., Arango-Salazar, L. M., & Pinal, R. (2023). Tunable Drug Release Rate Using Modular Oral Dosage Forms. Pharmaceutics, 15(7), 1905. https://doi.org/3390/pharmaceutics15071905
  5. Manzari, M. T., Shamay, Y., Kiguchi, H., Rosen, N., Scaltriti, M., & Heller, D. A. (2021). Targeted Drug Delivery Strategies for Precision Medicines. Nature Reviews Materials, 6(4), 351-370. https://doi.org/10.1038/s41578-020-00269-6
  6. Li, J., Wang, Q., Xia, G., Adilijiang, N., Li, Y., Hou, Z., Fan, Z., & Li, J. (2023). Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics, 15(9), 2233. https://doi.org/10.3390/pharmaceutics15092233
  7. Zhang, Y., Chan, H. F., & Leong, K. W. (2013). Advanced Materials and Processing for Drug Delivery: The Past and the Future. Advanced Drug Delivery Reviews, 65(1), 104-120. https://doi.org/10.1016/j.addr.2012.10.003
  8. Chatterjee, B., Steiner, R., & Kaul, G. (2024). Industry Perspective - What Does Industry Need to Accelerate Drug Product and Process Development? Pharmaceutical Research, 41(1), 7-11. https://doi.org/10.1007/s11095-023-03604-y
  9. Hou, X., Zaks, T., Langer, , & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078-1094. https://doi.org/10.1038/s41578-021-00358-0
  10. Swetha, K., Kotla, N. G., Tunki, L., Jayaraj, A., Bhargava, S. K., Hu, H., Bonam, S. R., & Kurapati, R. (2023). Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines, 11(3), 658. https://doi.org/10.3390/vaccines11030658
  11. Mashima, R., & Takada, S. (2022). Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application. Current Issues in Molecular Biology, 44(10), 5013-5017. https://doi.org/3390/cimb44100341
  12. Tenchov, R., Bird, R., Curtze, A. E., & Zhou, Q. (2021). Lipid Nanoparticles ─ From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 15(11), 16982-17015. https://doi.org/1021/acsnano.1c04996
  13. Feldman, R. A., Fuhr, R., Smolenov, I., Mick Ribeiro, A., Panther, L., Watson, M., et al. (2019). mRNA Vaccines Against H10N8 and H7N9 Influenza Viruses of Pandemic Potential are Immunogenic and Well Tolerated in Healthy Adults in Phase 1 Randomized Clinical Trials. Vaccine, 37(25), 3326-3334. https://doi.org/10.1016/j.vaccine.2019.04.074
  14. Jyotsana, N., Sharma, A., Chaturvedi, A., Budida, R., Scherr, M., Kuchenbauer, F., et al. (2019). Lipid Nanoparticle-Mediated siRNA Delivery for Safe Targeting of Human CML in Vivo. Annals of Hematology, 98(8), 1905-1918. https://doi.org/1007/s00277-019-03713-y
  15. Tsung, T.-H., Tsai, Y.-C., Lee, H.-P., Chen, Y.-H., & Lu, D.-W. (2023). Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. International Journal of Molecular Sciences24(16), 12976. https://doi.org/10.3390/ijms241612976
  16. Wood, D. A. (1980). Biodegradable Drug Delivery Systems. International Journal of Pharmaceutics, 7(1), 1-18. https://doi.org/10.1016/0378-5173(80)90094-0
  17. Werner, M. E., Cummings, N. D., Sethi, M., Wang, E. C., Sukumar, R., Moore, D. T., & Wang, A. Z. (2013). Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer. International Journal of Radiation Oncology* Biology *Physics, 86(3), 463-468. https://doi.org/1016/j.ijrobp.2013.02.009
  18. Hamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., et al. (2005). NK105, A Paclitaxel - Incorporating Micellar Nanoparticle Formulation, Can Extend in Vivo Antitumour Activity and Reduce the Neurotoxicity of Paclitaxel. British Journal of Cancer, 92(7), 1240-1246. https://doi.org/10.1038/sj.bjc.6602479
  19. Valle, J. W., Armstrong, A., Newman, C., Alakhov, V., Pietrzynski, G., Brewer, J., et al. (2011). A Phase 2 Study of SP1049C, Doxorubicin in P-Glycoprotein-Targeting Pluronics, in Patients with Advanced Aenocarcinoma of the Esophagus and Gastroesophageal Junction. Investigational New Drugs, 29(5), 1029-1037. https://doi.org/10.1007/s10637-010-9399-1
  20. Vigata, M., Meinert, C., Hutmacher, D. W., & Bock, N. (2020). Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics, 12(12), 1188. https://doi.org/10.3390/pharmaceutics12121188
  21. Narayanaswamy, R., & Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24(3), 603. https://doi.org/3390/molecules24030603
  22. Zhu, M., Wang, Y., Ferracci, G., Zheng, J., Cho, N.-J., & Lee, B. H. (2019). Gelatin Methacryloyl and Its Hydrogels with an Exceptional Degree of Controllability and Batch-to-Batch Consistency. Scientific Reports, 9, 6863. https://doi.org/1038/s41598-019-42186-x
  23. Yang, L., Fan, X., Zhang, J., & Ju, J. (2020). Preparation and Characterization of Thermoresponsive Poly(N-Isopropylacrylamide) for Cell Culture Applications. Polymers, 12(2), 389. https://doi.org/10.3390/polym12020389
  24. Ahmadi, F., Oveisi, Z., Samani, S. M., & Amoozgar, Z. (2015). Chitosan Based Hydrogels: Characteristics and Pharmaceutical Applications. Research in Pharmaceutical Sciences, 10(1), 1-16. https://pmc.ncbi.nlm.nih.gov/articles/PMC4578208
  25. Madaan, K., Kumar, S., Poonia, N., Lather, V., & Pandita, D. (2014). Dendrimers in Drug delivery and Targeting: Drug-Dendrimer Interactions and Toxicity Issues. Journal of Pharmacy and Bioallied Sciences, 6(3), 139-150. https://doi.org/10.4103/0975-7406.130965
  26. Chauhan, A. S. (2018). Dendrimers for Drug Delivery. Molecules, 23(4), 938. https://doi.org/10.3390/molecules23040938
  27. Abedi-Gaballu, F., Dehghan, G., Ghaffari, M., Yekta, R., Abbaspour-Ravasjani, S., Baradaran, B., et al. (2018). PAMAM Dendrimers as Efficient Drug and Gene Delivery Nanosystems for Cancer Therapy. Applied Materials Today, 12, 177-190. https://doi.org/1016/j.apmt.2018.05.002
  28. Fatima, M., Sheikh, A., Hasan, N., Sahebkar, A., Riadi, Y., & Kesharwani, P. (2022). Folic Acid Conjugated Poly(amidoamine) Dendrimer as a Smart Nanocarriers for Tracing, Imaging, and Treating Cancers Over-Expressing Folate Receptors. European Polymer Journal, 170, 111156. https://doi.org/10.1016/j.eurpolymj.2022.111156
  29. Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., Juncan, A. M., Totan, M., Vonica-Tincu, A. L., Cormos, G., Muntean, A. C., Muresan, M. L., Gligor, F. G., & Frum, A. (2020). Applications and Limitations of Dendrimers in Biomedicine. Molecules, 25(17), 3982. https://doi.org/10.3390/molecules25173982
  30. Navath, R. S., Kurtoglu, Y. E., Wang, B., Kannan, S., Romero, R., & Kannan, R. M. (2008). Dendrimer - Drug Conjugates for Tailored Intracellular Drug Release Based on Glutathione Levels. Bioconjugate Chemistry, 19(12), 2446-2455. https://doi.org/1021/bc800342d
  31. Maranescu, B., & Visa, A. (2022). Applications of Metal-Organic Frameworks as Drug Delivery Systems. International Journal of Molecular Sciences23(8), 4458. https://doi.org/3390/ijms23084458
  32. Sun, A. (2023). Applications of MOFs in Drug Delivery. Highlights in Science, Engineering and Technology, 58, 351-357. https://doi.org/54097/hset.v58i.10122
  33. Sun, Y., Zheng, L., Yang, Y., Qian, X., Fu, T., Li, X., Yang, Z., Yan, H., Cui, C., & Tan, W. (2020). Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 12(1), 103. https://doi.org/1007/s40820-020-00423-3
  34. Linnane, E., Haddad, S., Melle, F., Mei, Z., & Fairen-Jimenez, D. (2022). The Uptake of Metal-Organic Frameworks: A Journey into the Cell. Chemical Society Reviews, 51(14), 6065-6086. https://doi.org/10.1039/d0cs01414a
  35. Ahmadijokani, F., Molavi, H., Rezakazemi, M., Tajahmadi, S., Bahi, A., Ko, F., Aminabhavi, T., Li, J.-R., & Arjmand, M. (2022). UiO-66 Metal–Organic Frameworks in Water Treatment: A Critical Review. Progress in Materials Science, 125, 100904. https://doi.org/10.1016/j.pmatsci.2021.100904
  36. Bunggulawa, E. J., Wang, W., Yin, T., Wang, N., Durkan, C., Wang, Y., & Wang, G. (2018). Recent Advancements in the Use of Exosomes as Drug Delivery Systems. Journal of Nanobiotechnology, 16(1), 81. https://doi.org/1186/s12951-018-0403-9
  37. Koh, H. B., Kim, H. J., Kang, S. W., & Yoo, T. H. (2023). Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics, 15(8), 2042. https://doi.org/3390/pharmaceutics15082042
  38. Kim, H. I., Park, J., Zhu, Y., Wang, X., Han, Y., & Zhang, D. (2024). Recent Advances in Extracellular Vesicles for Therapeutic Cargo Delivery. Experimental & Molecular Medicine, 56(4), 836-849. https://doi.org/10.1038/s12276-024-01201-6
  39. Feng, C., Xiong, Z., Wang, C., Xiao, W., Xiao, H., Xie, K., et al. (2021). Folic Acid-Modified Exosome-PH20 Enhances the Efficiency of Therapy Via Modulation of the Tumor Microenvironment and Directly Inhibits Tumor Cell Metastasis. Bioactive Materials, 6(4), 963-974. https://doi.org/1016/j.bioactmat.2020.09.014
  40. Santos, P., & Almeida, F. (2021). Exosome-Based Vaccines: History, Current State, and Clinical Trials. Frontiers in Immunology, 12, 711565. https://doi.org/3389/fimmu.2021.711565
  41. Bharti, C., Nagaich, U., Pal, A. K., & Gulati, N. (2015). Mesoporous Silica Nanoparticles in Target Drug Delivery System: A Review. International Journal of Pharmaceutical Investigation, 5(3), 124-133. https://doi.org/10.4103/2230-973x.160844
  42. Janjua, T. I., Cao, Y., Yu, C., & Popat, A. (2021). Clinical translation of silica nanoparticles. Nature Reviews Materials, 6(12), 1072-1074. https://doi.org/1038/s41578-021-00385-x
  43. Tm, M. W., Ng, K. W., Lau, M., & Khutoryanskiy, V. V. (2020). Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics, 12(8), 751. https://doi.org/10.3390/pharmaceutics12080751
  44. Frickenstein, A. N., Hagood, J. M., Britten, C. N., Abbott, B. S., McNally, M. W., Vopat, C. A., Patterson, E. G., MacCuaig, W. M., Jain, A., Walters, K. B., & McNally, L. R. (2021). Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics13(4), 570. https://doi.org/10.3390/pharmaceutics13040570
  45. Nguyen, T. H., Tan, A., Santos, L., Ngo, D., Edwards, G. A., Porter, C. J., et al. (2013). Silica-Lipid Hybrid (SLH) Formulations Enhance the Oral Bioavailability and Efficacy of Celecoxib: An in Vivo Journal of Controlled Release, 167(1), 85-91. https://doi.org/10.1016/j.jconrel.2013.01.012
  46. Liberman, A., Mendez, N., Trogler, W. C., & Kummel, A. (2014). Synthesis and Surface Functionalization of Silica Nanoparticles for Nanomedicine. Surface Science Reports, 69(2-3), 132-158. https://doi.org/10.1016/j.surfrep.2014.07.001
  47. Zhu, M., Whittaker, A. K., Han, F. Y., & Smith, M. T. (2022). Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. Applied Sciences, 12(2), 935. https://doi.org/3390/app12020935
  48. Dhaliwal, K., & Dosanjh, P. (2018). Biodegradable Polymers and Their Role in Drug Delivery Systems. Biomedical Journal of Scientific & Technical Research, 11(1), 8315-8320. https://doi.org/10.26717/BJSTR.2018.11.002056
  49. Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377-1397. https://doi.org/3390/polym3031377
  50. Bhadran, A., Shah, T., Babanyinah, G. K., Polara, H., Taslimy, S., Biewer, M. C., & Stefan, M. C. (2023). Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics15(7), 1977. https://doi.org/10.3390/pharmaceutics15071977
  51. Li, J., Cai, C., Li, J., Li, J., Li, J., Sun, T., Wang, L., Wu, H., & Yu, G. (2018). Chitosan-Based Nanomaterials for Drug Delivery. Molecules23(10), 2661. https://doi.org/3390/molecules23102661
  52. Foox, M., & Zilberman, M. (2015). Drug Delivery from Gelatin-Based Systems. Expert Opinion on Drug Delivery12(9), 1547-1563. https://doi.org/1517/17425247.2015.1037272
  53. Tønnesen, H. H., & Karlsen, J. (2002). Alginate in Drug Delivery Systems. Drug Development and Industrial Pharmacy28(6), 621-630. https://doi.org/1081/ddc-120003853
  54. Heller, J., Barr, J., Ng, S. Y., Abdellauoi, K. S., & Gurny, R. (2002). Poly(Ortho Esters): Synthesis, Characterization, Properties and Uses. Advanced Drug Delivery Reviews, 54(7), 1015-1039. https://doi.org/10.1016/s0169-409x(02)00055-8
  55. Rahim, M. A., Jan, N., Khan, S., Shah, H., Madni, A., Khan, A., Jabar, A., Khan, S., Elhissi, A., Hussain, Z., Aziz, H. C., Sohail, M., Khan, M., & Thu, H. E. (2021). Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers13(4), 670. https://doi.org/10.3390/cancers13040670
  56. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-Responsive Nanocarriers for Drug Delivery. Nature Materials, 12(11), 991-1003. https://doi.org/1038/nmat3776
  57. Vegad, U., Patel, M., Khunt, D., Zupančič, O., Chauhan, S., & Paudel, A. (2023). pH Stimuli-Responsive Hydrogels from Non-Cellulosic Biopolymers for Drug Delivery. Frontiers in Bioengineering and Biotechnology, 11, 1270364. https://doi.org/3389/fbioe.2023.1270364
  58. Abuwatfa, W. H., Awad, N. S., Pitt, W. G., & Husseini, G. A. (2022). Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers14(5), 925. https://doi.org/3390/polym14050925
  59. Zhang, X., Wang, S., Cheng, G., Yu, P., & Chang, J. (2022). Light-Responsive Nanomaterials for Cancer Therapy. Engineering, 13, 18-30. https://doi.org/10.1016/j.eng.2021.07.023
  60. Guidi, L., Cascone, M. G., & Rosellini, E. (2024). Light-Responsive Polymeric Nanoparticles for Retinal Drug Delivery: Design Cues, Challenges and Future Perspectives. Heliyon, 10(5), e26616. https://doi.org/10.1016/j.heliyon.2024.e26616
  61. Shahriari, M., Zahiri, M., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2019). Enzyme Responsive Drug Delivery Systems in Cancer Treatment. Journal of Controlled Release, 308, 172-189. https://doi.org/1016/j.jconrel.2019.07.004
  62. Qian, B., Zhao, Q., & Ye, X. (2020). Ultrasound and Magnetic Responsive Drug Delivery Systems for Cardiovascular Application. Journal of Cardiovascular Pharmacology, 76(4), 414-426. https://doi.org/10.1097/fjc.0000000000000885
  63. Nottelet, B., Buwalda, S., van Nostrum, C. F., Zhao, X., Deng, C., Zhong, Z., Cheah, E., Svirskis, D., Trayford, C., van Rijt, S., Ménard-Moyon, C., Kumar, R., Kehr, N. S., de Barros, N. R., Khademhosseini, A., Kim, H. J., & Vermonden, T. (2024). Roadmap on Multifunctional Materials for Drug Delivery. Journal of Physics: Materials, 7(1), 012502. https://doi.org/1088/2515-7639/ad05e8
  64. Ruffel, L., Soulié, J., Coppel, Y., Roblin, P., Brouillet, F., Frances, C., & Tourbin, M. (2020). Ibuprofen Loading into Mesoporous Silica Nanoparticles Using Co-Spray Drying: A Multi-Scale Study. Microporous and Mesoporous Materials, 291, 109689. https://doi.org/10.1016/j.micromeso.2019.109689
  65. Tarach, P., & Janaszewska, A. (2021). Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. International Journal of Molecular Sciences22(6), 2912. https://doi.org/10.3390/ijms22062912
  66. Wu, K., Wang, J.-P., Natekar, N. A., Ciannella, S., González-Fernández, C., Gomez-Pastora, J., Bao, Y., Liu, J., Liang, S. & Wu, X. (2024). Roadmap on Magnetic Nanoparticles in Nanomedicine. Nanotechnology, 36(4), 042003. https://doi.org/1088/1361-6528/ad8626
  67. English, M. A., Soenksen, L. R., Gayet, R. V., de Puig, H., Angenent-Mari, N. M., Mao, A. S., Nguyen, P. Q., & Collins, J. J. (2019). Programmable CRISPR-Responsive Smart Materials. Science, 365(6455), 780-785. https://doi.org/1126/science.aaw5122
  68. Gayet, R. V., de Puig, H., English, M. A., Soenksen, L. R., Nguyen, P. Q., Mao, A. S., Angenent-Mari, N. M., & Collins, J. J. (2020). Creating CRISPR-Responsive Smart Materials for Diagnostics and Programmable Cargo Release. Nature Protocols, 15(9), 3030-3063. https://doi.org/1038/s41596-020-0367-8
  69. Park, H., Otte, A., & Park, K. (2022). Evolution of Drug Delivery Systems: From 1950 to 2020 and Beyond. Journal of Controlled Release, 342, 53-65. https://doi.org/1016/j.jconrel.2021.12.030
  70. Almansour, K., & Alqahtani, A. S. (2025). Utilization of Machine Learning Approach for Production of Optimized PLGA Nanoparticles for Drug Delivery Applications. Scientific Reports, 15(1), 8840. https://doi.org/10.1038/s41598-025-92725-y
  71. [Wu, L., Wang, J., Gao, N., Ren, J., Zhao, A., & Qu, X. (2015). Electrically Pulsatile Responsive Drug Delivery Platform for Treatment of Alzheimer’s Disease. Nano Research, 8(7), 2400-2414. https://doi.org/10.1007/s12274-015-0750-x
  72. Chrystyn, H., Audibert, R., Keller, M., Quaglia, B., Vecellio, L., & Roche, N. (2019). Real-Life Inhaler Adherence and Technique: Time to Get Smarter! Respiratory Medicine, 158, 24-32. https://doi.org/10.1016/j.rmed.2019.09.008
  73. Zhao, Z., Liu, Y., Ruan, S., & Hu, Y. (2023). Current Anti-Amyloid-β Therapy for Alzheimer's Disease Treatment: From Clinical Research to Nanomedicine. International Journal of Nanomedicine, 18, 7825-7845. https://doi.org/10.2147/ijn.S444115
  74. Mansouri, A., Badivi, S., Ghodsi, R., Jamshidi, E., Nouri Jevinani, H., Farahmand, F., Khodadadi, B., Ghafari, M., Eshrati Yeganeh, F., Bidaki, A., Noorbazargan, H., & Tavakkoli Yaraki, M. (2025). Folic Acid-Conjugated UIO-66-MOF Enhances the Targeted Co-Delivery of Cisplatin and Cyclo-phosphamide for Breast Cancer Therapy. Journal of Drug Delivery Science and Technology, 104, 106510. https://doi.org/10.1016/j.jddst.2024.106510
  75. Falanga, A., Del Genio, V., & Galdiero, S. (2021). Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics, 13(1), 101. https://doi.org/10.3390/pharmaceutics13010101
  76. Ruppl, A., Kiesewetter, D., Köll-Weber, M., Lemazurier, T., Süss, R., & Allmendinger, A. (2025). Formulation Screening of Lyophilized mRNA-Lipid Nanoparticles. International Journal of Pharmaceutics, 671, 125272. https://doi.org/10.1016/j.ijpharm.2025.125272
  77. Grewar, T., Gericke, M., & Whiteley, C. (2006). Analysis of the Inter- and Extracellular Formation of Platinum Nanoparticles by Fusarium Oxysporum f. sp. Lycopersici Using Response Surface Methodology. Nanotechnology, 17(14), 3482-3489. https://doi.org/1088/0957-4484/17/14/021
  78. Liao, W.-S., Ho, Y., Lin, Y.-W., Naveen Raj, E., Liu, K.-K., & Chen, C., Zhou, X.-Z., Lu, K.-P., & Chaoet, J.-I. (2019). Targeting EGFR of Triple-Negative Breast Cancer Enhances the Therapeutic Efficacy of Paclitaxel- and Cetuximab-Conjugated Nanodiamond Nanocomposite. Acta Biomaterialia, 86, 395-405. https://doi.org/10.1016/j.actbio.2019.01.025
  79. Liu, X., Gao, M., & Bao, J. (2025). Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications. Nanomaterials, 15(7), 540. https://doi.org/3390/nano15070540
  80. Luo, J., Wang, , Tang, X., Huang, P., Yang, S., & Zhao, S., et al. (2024). CRISPR/Cas12a-loaded intelligent DNA hydrogel for universal and ultrasensitive exosome assay. VIEW, 5(2), 20230086. https://doi.org/10.1002/VIW.20230086
  81. Srivastava, R., & Lesser, C. F. (2024). Living Engineered Bacterial Therapeutics: Emerging Affordable Precision Interventions. Microbial Biotechnology, 17(11), e70057. https://doi.org/10.1111/1751-7915.70057
  82. Kujawska, M., Bhardwaj, S. K., Mishra, Y. K., & Kaushik, A. (2021). Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. Biosensors, 11(11), 433. https://doi.org/3390/bios11110433