Synthesis and investigation of photocatalytic properties of CaSnO3/Ag composite

Document Type : Research Article

Author

Institute of Manufacturing Engineering and Industrial Technologies, Na.C, Islamic Azad University, Najafabad, Iran

Abstract

Environmental crises, including polluted waters and the emission of greenhouse gases, have been major problems for societies in recent years. As a result, the need for innovative purification systems has recently become one of the main research fields. Photocatalysts are recognized as one of the prominent methods for the removal and degradation of pollutants. These techniques are particularly effective in reducing organic pollutants in wastewater. In the present study, a CaSnO3/Ag photocatalytic system was synthesized using the hydrothermal method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to identify the produced photocatalytic system. The Williamson-Hall method was used to measure the crystallite size and lattice strain. The photocatalytic activity of the synthesized material was investigated using the degradation of the organic dye methyl orange. The results of XRD analysis indicated the formation of two phases: calcium stannate with a perovskite structure and silver with a cubic crystal structure. The particle size distribution of the produced particles was uniform, with most particles ranging between 100 and 250 nm. The particles precipitated in the hydrothermal container had a spherical shape. The photocatalytic degradation of calcium stannate samples increased after combining with silver. The kinetic rate constant obtained for the degradation of methyl orange for pure calcium stannate and the composite sample was 0.004 and 0.007, respectively.

Graphical Abstract

Synthesis and investigation of photocatalytic properties of CaSnO3/Ag composite

Highlights

  • CaSnO3/Ag were synthesized via a hydrothermal route as a new photocatalyst.
  • The hybrid material shows higher photocatalytic activity for photodegradation.
  • Coupling CaSnO3 with Ag endowed the photocatalysts with a higher kinetic rate constant.

Keywords

Main Subjects


Copyright © 2024 The Author(s). Published by IROST.

[1] Aljuaid, A., Almehmadi, M., Alsaiari, A. A., Allahyani, M., Abdulaziz, O., Alsharif, A., Alsaiari, J. A., Saih, M., Alotaibi, R. T., & Khan, I. (2023). g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules, 28(7), 3199. https://doi.org/10.3390/molecules28073199
[2] Kishor, R., Purchase, D., Saratale, G. D., Ferreira, L. F. R., Hussain, C. M., Mulla, S. I., & Bharagava, R. N. (2021). Degradation Mechanism and Toxicity Reduction of Methyl Orange Dye by A Newly Isolated Bacterium Pseudomonas aeruginosa MZ520730. Journal of Water Process Engineering, 43, 102300. https://doi.org/10.1016/j.jwpe.2021.102300
[3] Azimi-Fouladi, A. Falak, P., & Hassanzadeh-Tabrizi, S. A. (2023). The Photodegradation of Antibiotics on Nano Cubic Spinel Ferrites Photocatalytic Systems: A Review. Journal of Alloys and Compounds, 961, 171075. https://doi.org/10.1016/j.jallcom.2023.171075
[4] Borges, M. E., Sierra, M., Cuevas, E., García, R. D., & Esparza, P. (2016). Photocatalysis with Solar Energy: Sunlight-Responsive Photocatalyst Based on TiO2 Loaded on a Natural Material for Wastewater Treatment. Solar Energy, 135, 527-735. https://doi.org/10.1016/j.solener.2016.06.022
[5] Wang, W., Li, G., Xia, D., An, T., Zhao, H., & Wong, P. K. (2017). Photocatalytic Nanomaterials for Solar-Driven Bacterial Inactivation: Recent Progress and Challenges. Environental Science: Nano, 4, 782-799. https://doi.org/10.1039/C7EN00063D
[6] Qiu, X., Zhang, Y., Zhu, Y., Long, C., Su, L., Liu, S., & Tang, Z. (2021). Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 33(6), 2001731. https://doi.org/10.1002/adma.202001731
[7] Moshtaghi, S., Gholamrezaei, S., & Salavati-Niasari, M. (2017). Nano Cube of CaSnO3: Facile and Green Co-Precipitation Synthesis, Characterization and Photocatalytic Degradation of Dye. Journal of Molecular Structure, 1134, 511-519. https://doi.org/10.1016/j.molstruc.2016.12.098
[8] Venkatesh, G., Palanisamy, G., Srinivasan, M., Vignesh, S., Elavarasan, N., Pazhanivel, T., Al-Enizi, A. M., Ubaidullah, M., Karim, A., & Prabu, K. M. (2022). CaSnO3 Coupled g-C3N4 S-Scheme Heterostructure Photocatalyst for Efficient Pollutant Degradation. Diamond and Related Materials, 124, 108873. https://doi.org/10.1016/j.diamond.2022.108873
[9] Venkatesh, G., Prabhu, S., Geerthana, M., Baskaran, P., Ramesh, R., & Prabu, K. M. (2020). Facile Synthesis of rGO/CaSnO3 Nanocomposite as an Efficient Photocatalyst for the Degradation of Organic Dye. Optik, 212, 164716. https://doi.org/10.1016/j.ijleo.2020.164716
[10] Hosseini, M., Ghanbari, M., Dawi, E. A., Alubiady, M. H. S., Al-Ani, A. M., Alkaim, A. F., & Salavati-Niasari, M. (2024). CaSnO3/g-C3N4 S-Scheme Heterojunction Photocatalyst for the Elimination of Erythrosine and Eriochrome Black T from Water under Visible Light. Results in Engineering, 21, 101903. https://doi.org/10.1016/j.rineng.2024.101903
[11] Li, H., Gao, Y., Gao, D., & Wang, Y. (2019). Effect of Oxide Defect on Photocatalytic Properties of MSnO3 (M= Ca, Sr, and Ba) Photocatalysts. Applied Catalysis B: Environmental, 243, 428-437. https://doi.org/10.1016/j.apcatb.2018.10.076
[12] Shah, N. H., Abbas, M., Qasim, M., Sulaman, M., Imran, M., Azmat, S., Cui, Y., & Wang, Y. (2023). Tuning the Catalytic Performance of CaSnO3 by Developing an S-Scheme p–n Heterojunction through Ag6Si2O7 Doping. Catalysis Science & Technology, 13(22), 6490-6504. https://doi.org/10.1039/D3CY01151H
[13] Rakesh, G. N., Priyadarshini, H. N., Alharethy, F., Pavitra, V., Anusha, B. R., Appu, S., Aarti, D. P., Srinivas Reddy, G., Nagaraju, G., & Prashantha, K. (2024). CaSnO3 Nanorod-Decorated Bi2WO6 Nanosheets as a Stable Heterojunction Photocatalyst for Improved Photocatalysis and Nitrite Sensing. New Journal of Chemistry, 48(33), 14819-14833. https://doi.org/10.1039/D4NJ01286K
[14] An, C., Wang, S., Sun, Y., Zhang, Q., Zhang, J., Wang, C., & Fang, J. (2016). Plasmonic Silver Incorporated Silver halides for Efficient Photocatalysis. Journal of Materials Chemistry A, 4(12), 336-352. https://doi.org/10.1039/C5TA07719B
[15] Bhunia, S. K., & Jana, N. R. (2014). Reduced Graphene Oxide-Silver Nanoparticle Composite as Visible Light Photocatalyst for Degradation of Colorless Endocrine Disruptors. ACS Applied Materials & Interfaces, 6(22), 20085-20092. https://doi.org/10.1021/am505677x
[16] Yu, J., Yang, Y., Sun, F., & Chen, J. (2024). Research Status and Prospect of Nano Silver (Ag)-Modified Photocatalytic Materials for Degradation of Organic Pollutants. Environmental Science and Pollution Research, 31, 191-214. https://doi.org/10.1007/s11356-023-31166-4
[17] Zak, A. K., Majid, W. H. A., Abrishami, M. E., & Yousefi, R. (2011). X-Ray Analysis of ZnO Nanoparticles by Williamson–Hall and Size-Strain Plot Methods. Solid State Science, 13(1), 251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024
[18] Pang, W., Li, Y., DeLuca, L. T., Liang, D., Qin, Z., Liu, X., Xu, H., & Fan, X. (2021). Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials, 11(10), 2749. https://doi.org/10.3390/nano11102749
[19] Lucena, G. L., de Lima, L. C., Honório, L. M. C., de Oliveira, A. L. M., Tranquilim, R. L., Longo, E., de Souza, A. G., da S. Maia, A., & dos Santos, I. M. G. (2017). CaSnO3 Obtained by Modified Pechini Method Applied in the Photocatalytic Degradation of an Azo Dye. Cerâmica, 63, 536-541. https://doi.org/10.1590/0366-69132017633682190
[20] Kumar, R., Janbandhu, S. Y., Sukhadeve, G. K., & Gedam, R. S. (2023). Enhanced Visible-Light Photodegradation of Organic Pollutants by Surface Plasmon Resonance Supported Ag/ZnO Heterostructures. Journal of Materials Research, 38(2), 557-570. https://doi.org/10.1557/s43578-022-00844-3
[21] Zawadzki, P., Kudlek, E., & Dudziak, M. (2018). Kinetics of the Photocatalytic Decomposition of Bisphenol a on Modified Photocatalysts. Journal of Ecological Engineering, 19(4), 260-268. https://doi.org/10.12911/22998993/89651
[22] Chakhtouna, H., Benzeid, H., Zari, N., Qaiss, A. E. K., & Bouhfid, R. (2021). Recent Progress on Ag/TiO2 Photocatalysts: Photocatalytic and Bactericidal Behaviors. Environmental Science and Pollution Research, 28, 44638-44666. https://doi.org/10.1007/s11356-021-14996-y
[23] Sabry, R. S., Aziz, W. J., & Rahmah, M. I. (2020). Employed Silver Doping to Improved Photocatalytic Properties of ZnO Micro/Nanostructures.  Journal of Inorganic and Organometallic Polymers and Materials, 30(11), 4533-4543. https://doi.org/10.1007/s10904-020-01661-z