Sonochemical synthesis of γ-Fe2O3 nanoparticles for cancer hyperthermia

Document Type : Research Article

Authors

1 Advanced Materials Research Center, Department of Materials Engineering, Na. C, Islamic Azad University, Najafabad, Iran

2 Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran

Abstract

This study addresses the limitations of conventional cancer treatments, such as chemotherapy and radiotherapy, by focusing on the synthesis and characterization of superparamagnetic γ-Fe2O3 nanoparticles (GMNP) using the sonochemical method for hyperthermia-based cancer therapy. While previous studies have explored the use of magnetic nanoparticles in cancer treatment, their efficiency and quality have remained suboptimal. In this study, we propose a sonochemical approach to enhance the quality and performance of GMNPs. The sonochemical method improved nanoparticle quality and efficiency. The GMNPs demonstrated a significant hyperthermic effect, with a temperature increase exceeding 43 °C under an alternative magnetic field (ACMF) (400 kHz), which can help induce apoptosis and necrosis in cancer cells. The nanoparticles were spherical in shape, with sizes ranging from 20 to 51 nm. Cytotoxicity assays (MTT assay) showed that the nanoparticles maintained high biocompatibility, with cell viability above 75 % at all concentrations. These findings suggest that GMNPs synthesized via the sonochemical method offer improved efficacy compared to traditional methods, making them a promising candidate for hyperthermia-based cancer therapy.

Graphical Abstract

Sonochemical synthesis of γ-Fe2O3 nanoparticles for cancer hyperthermia

Highlights

  • γ-Fe2O3 nanoparticles were synthesized via a sol-gel combustion route.
  • γ-Fe2O3 nanoparticles had a spherical form and ranged in size from 20 to 51 nm.
  • γ-Fe2Onanoparticles can be considered a suitable option for hyperthermia treatments in cancer.

Keywords

Main Subjects


Copyright © 2024 The Author(s). Published by IROST.

[1] Baronzio, G., Parmar, G., Ballerini, M., Szasz, A., Baronzio, M., & Cassutti, V. (2014). A Brief Overview of Hyperthermia in Cancer Treatment. Journal of Integrative Oncology, 3(1), 115. https://doi.org/10.4172/2329-6771.1000115
[2] Peiravi, M., Eslami, H., Ansari, M., & Zare-Zardini, H. (2022). Magnetic Hyperthermia: Potentials and Limitations. Journal of the Indian Chemical Society, 99(1), 100269. https://doi.org/10.1016/j.jics.2021.100269
[3] Sarani, M., Barani, M., Darijani, S., Adeli-Sardou, M., Aghabozorgi, F., & Sardashti-Birjandi, A. (2024). In Vitro Cytotoxic Study of Synthesized Ag and Ce Dual- Doped α-Fe2O3 Nanoparticles on NIH/3T3 and U87 Cell Lines. Inorganic Chemistry Communications, 170(Part 1), 113236. https://doi.org/10.1016/j.inoche.2024.113236
[4] Mehdigholami, S., & Koohestanian, E. (2023). Fe3O4@SiO2/AEPTMS/Fe(OTf)3: An Efficient Superparamagnetic Nanocatalyst for the Protecting of Alcohols. Journal of Particle Science and Technology, 9(1), 1-9. https://doi.org/10.22104/jpst.2023.6188.1224
[5] Koohestanian, E., & Mehdigholami, S. (2023). Synthesis of Hematite Nanoparticles by Ball Milling and the Study of the Magnetic Properties and its Microstructure. Chemical Process Design, 2(2), 52-59. https://doi.org/10.22111/cpd.2024.47291.1030
[6] Gupta, A. K., & Gupta, M. (2005). Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials, 26(18), 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
[7] Mohassel, R., Amiri, M., Kareem Abbas, A., Sobhani, A., Ashrafi, M., Moayedi, H., & Salavati-Niasari, M. (2020). Pechini Synthesis Using Propylene Glycol and Various Acid as Stabilizing Agents and Characterization of Gd2NiMnO6 Ceramic Nanostructures with Good Photocatalytic Properties for Removal of Organic Dyes in Water. Journal of Materials Research and Technology, 9(2), 1720-1733. https://doi.org/10.1016/j.jmrt.2019.12.003
[8] Sakurai, S., Namai, A., Hashimoto, K., & Ohkoshi, S. (2009). First Observation of Phase Transformation of All Four Fe2O3 Phases (γ → ε → β → α-Phase). Journal of the American Chemical Society, 131(51), 18299-18303. https://doi.org/10.1021/ja9046069
[9] Vangijzegem, T., Stanicki, D., & Laurent, S. (2019). Magnetic Iron Oxide Nanoparticles for Drug Delivery: Applications and Characteristics. Expert Opinion on Drug Delivery, 16(1), 69-78. https://doi.org/10.1080/17425247.2019.1554647
[10] Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Roux, S., Wilhelm, C., Gazeau, F., & Bazzi, R. (2012). Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia. The Journal of Physical Chemistry C, 116(29), 15702-15712. https://doi.org/10.1021/jp3025478
[11] Zinatloo-Ajabshir, S., Mahmoudi-Moghaddam, H., Amiri, M., & Akbari Javar, H. (2024). A Green Route for the Synthesis of Sponge-Like Pr6O11 Nanoparticles and Their Application for the Development of Chlorambucil Sensor. Measurement, 235, 114924. https://doi.org/10.1016/j.measurement.2024.114924
[12] Baladi, M., Amiri, M., Mohammadi, P., Mahdi, K. S., Golshani, Z., Razavi, R., Salavati-Niasari, M. (2023). Green Sol-Gel Synthesis of Hydroxyapatite nanoparticles Using Lemon Extract as Capping Agent and Investigation of Its Anti-Cancer Activity Against Human Cancer Cell Lines (T98, and SHSY5). Arabian Journal of Chemistry, 16(4), 104646. https://doi.org/10.1016/j.arabjc.2023.104646
[13] Maiti, D., Manju, U., Velaga, S., & Sujatha Devi, P. (2013). Phase Evolution and Growth of Iron Oxide Nanoparticles: Effect of Hydrazine Addition During Sonication. Crystal Growth & Design, 13(8), 3637-3644. https://doi.org/10.1021/cg400627c
[14] Joshi, N., Pandey, D. K., Mistry, B. G., & Singh, D. K. (2023). Metal Oxide Nanoparticles: Synthesis, Properties, Characterization, and Applications. In: Singh, D. K., Singh, S., & Singh, P. (Eds.) Nanomaterials (pp. 103-144). Springer. https://doi.org/10.1007/978-981-19-7963-7_5
[15] Hujjatul Islam, M., Paul, M. T. Y., Burheim, O. S., & Pollet, B. G. (2019). Recent Developments in the Sonoelectrochemical Synthesis of Nanomaterials. Ultrasonics Sonochemistry, 59, 104711. https://doi.org/10.1016/j.ultsonch.2019.104711
[16] Lee, Y.-J., Jun, K.-W., Park, J.-Y., Potdar, H. S., Chikate, R. C. (2008). A Simple Chemical Route for the Synthesis of γ-Fe2O3 Nanoparticles Dispersed in Organic Solvents Via an Iron–Hydroxy Oleate Precursor. Journal of Industrial and Engineering Chemistry, 14(1), 38-44. https://doi.org/10.1016/j.jiec.2007.08.009
[17] Nomngongo, P. N. (2023). Nanoadsorbents: Synthesis, Characterization, and Industrial Applications. In Verma, C., Aslam, J., & Ehtisham Khan, M. (Eds.). Micro and Nano Technologies, Adsorption Through Advanced Nanoscale Materials (pp. 23-45). Elsevier. https://doi.org/10.1016/B978-0-443-18456-7.00002-X
[18] Carter, C. B., & Norton, M. G. (2007). Sols, Gels, and Organic Chemistry. In: Ceramic Materials: Science and Engineering (pp. 400-411). Springer, New York. https://doi.org/10.1007/978-0-387-46271-4_22
[19] Halgamuge, M. N., & Song, T. (2020). Optimizing Heating Efficiency of Hyperthermia: Specific Loss Power of Magnetic Sphere Composed of Superparamagnetic Nanoparticles. Progress in Electromagnetics Research B, 87, 1-17. https://doi.org/10.2528/PIERB19121702
[20] Noor Azreen, A. R., Nur Amalina, M., Aziz, N. D. A., Badar, N., & Kamarulzaman, N. (2012). Synthesis and Characterization of Fe2O3 Prepared Via Sol-Gel Method. In Advanced Materials Research (Vol. 545, pp. 410-413). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.545.410
[21] Lemine, O. (2009). Microstructural Characterization of α-Fe2O3 Nanoparticles Using, XRD Line Profiles Analysis, FE-SEM and FT-IR. Superlattices and Microstructures, 45(6), 576-582. https://doi.org/10.1016/j.spmi.2009.02.004
[22] Hassanzadeh-Tabrizi, S., & Taheri-Nassaj, E. (2013). Polyacrylamide Gel Synthesis and Sintering of Mg2SiO4:Eu3+ Nanopowder. Ceramics International, 39(6), 6313- 6317. https://doi.org/10.1016/j.ceramint.2013.01.056
[23] Espinoza, M. J. C., Lin, K.-S., Weng, M.-T., Kunene, S. C., & Wang, S. S.-S. (2021). In Vitro Studies of Pluronic F127 Coated Magnetic Silica Nanocarriers for Drug Delivery System Targeting Liver Cancer. European Polymer Journal, 153, 110504. https://doi.org/10.1016/j.eurpolymj.2021.110504
[24] Hassanzadeh-Tabrizi, S. (2021). Synthesis of NiFe2O4/ Ag Nanoparticles Immobilized on Mesoporous g-C3N4 Sheets and Application for Degradation of Antibiotics. Journal of Photochemistry and Photobiology A: Chemistry, 418, 113398. https://doi.org/10.1016/j.jphotochem.2021.113398
[25] Qian, Z., Zhao, N., Xu, S., & Yuan, W. (2024). In Situ Injectable Thermoresponsive Nanocomposite Hydrogel Based on Hydroxypropyl Chitosan for Precise Synergistic Calcium-Overload, Photodynamic and Photothermal Tumor Therapy. Carbohydrate Polymers, 324, 121487. https://doi.org/10.1016/j.carbpol.2023.121487
[26] Golmohammad, M., Golestanifard, F., & Mirhabibi, A., (2016). Synthesis and Characterization of Maghemite as an Anode for Lithium-Ion Batteries. International Journal of Electrochemical Science, 11(8), 6432-6442. https://doi.org/10.20964/2016.08.55
[27] Nazari, M., Ghasemi, N., Maddah, H., & Mousavi Motlagh, M. (2014). Synthesis and Characterization of Maghemite Nanopowders by Chemical Precipitation Method. Journal of Nanostructure in Chemistry, 4, 99. https://doi.org/10.1007/s40097-014-0099-9
[28] Wattanathana, W., Suetrong, N., Kongsamai, P., Chansaenpak, K., Chuanopparat, N., Hanlumyuang, Y., Kanjanaboos, P., & Wannapaiboon, S. (2021). Crystallographic and Spectroscopic Investigations on Oxidative Coordination in the Heteroleptic Mononuclear Complex of Cerium and Benzoxazine Dimer. Molecules, 26(17), 5410. https://doi.org/10.3390/molecules26175410
[29] Rahman, L., Bhattacharjee, S., Islam, S., Zahan, F., Biswas, B., & Sharmin, N. (2020). A Study on the Preparation and Characterization of Maghemite (γ-Fe2O3) Particles from Iron-Containing Waste Materials. Journal of Asian Ceramic Societies, 8(4), 1083-1094. https://doi.org/10.1080/21870764.2020.1812838
[30] Sohrabijam, Z., Zamanian, A., Saidifar, M., Nouri, A. (2015). Prepartion and Characterization of Superparamagnetic Chitosan Coated Maghemite (γ-Fe2O3) for Gene Delivery. Procedia Materials Science, 11, 282- 286. https://doi.org/10.1016/j.mspro.2015.11.051
[31] Lee, J. H., Ju, J. E., Kim, B. I., Pak, P. J., Choi, E.- K., Lee, H.-S., & Chung, N. (2014). Rod-Shaped Iron Oxide Nanoparticles Are More Toxic than Sphere-Shaped Nanoparticles to Murine Macrophage Cells. Environmental Toxicology and Chemistry, 33(12), 2759- 2766. https://doi.org/10.1002/etc.2735
[32] Singh, R., & Torti, S. V. (2013). Carbon Nanotubes in Hyperthermia Therapy. Advanced Drug Delivery Reviews, 65(15), 2045-2060. https://doi.org/10.1016/j.addr.2013.08.001
[33] Kaflé, B. P. (2020). Introduction to Nanomaterials and Application of UV–Visible Spectroscopy for Their Characterization. In Chemical Analysis and Material Characterization by Spectrophotometry (pp. 147-198) Elsevier. https://doi.org/10.1016/B978-0-12-814866-2.00006-3
[34] Upadhyay, S., Parekh, K., & Pandey, B. (2016). Influence of Crystallite Size on the Magnetic Properties of Fe3O4 Nanoparticles. Journal of Alloys and Compounds, 678, 478-485. https://doi.org/10.1016/j.jallcom.2016.03.279
[35] Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles. Scientific Reports, 7, 9894. https://doi.org/10.1038/s41598-017-09897-5
[36] Hu, C., Zhang, Z., Liu, H., Gao, P., & Wang, Z. L. (2006). Direct Synthesis and Structure Characterization of Ultrafine CeO2 Nanoparticles. Nanotechnology, 17(24), 5983. https://doi.org/10.1088/0957-4484/17/24/013
[37] Ma, N., Ma, C., Li, C., Wang, T., Tang, Y., Wang, H., Moul, X., Chen, Z., & Hel, N. (2013). Influence of Nanoparticle Shape, Size, and Surface Functionalization on Cellular Uptake. Journal of Nanoscience and Nanotechnology, 13(10), 6485-6498. https://doi.org/10.1166/jnn.2013.7525
[38] Cooley, M., Sarode, A., Hoore, M., Fedosov, D. A., Mitragotri, S., & Sen Gupta, A. (2018). Influence of Particle Size and Shape on Their Margination and Wall- Adhesion: Implications in Drug Delivery Vehicle Design Across Nano-to-Micro Scale. Nanoscale, 10(32), 15350- 15364. https://doi.org/10.1039/C8NR04042G
[39] Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y. S., & Haynes, C. L. (2012). Assessing nanoparticle toxicity. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 5, 181-205. https://doi.org/10.1146/annurev-anchem-062011-143134
[40] Vijayasri, G., Bhaskar, R. C., & Rajesh, J. (2022). An Essential Advancement of Magnetic Nanoparticles. In Hussain, C. M., & Patankar, K. K. (Eds.), Fundamentals and Industrial Applications of Magnetic Nanoparticles (pp. 41-63). Elsevier. https://doi.org/10.1016/B978-0-12-822819-7.00004-1
[41] Pucci, C., Degl'Innocenti, A., Belenli Gümüş, M., & Ciofani, G. (2022). Superparamagnetic Iron Oxide Nanoparticles for Magnetic Hyperthermia: Recent Advancements, Molecular Effects, and Future Directions in the Omics Era. Biomaterials Science, 10(9), 2103-2121. https://doi.org/10.1039/D1BM01963E
[42] Abenojar, E. C., Wickramasinghe, S., Bas-Concepcion, J., Samia, A. C. S. (2016). Structural Effects on the Magnetic Hyperthermia Properties of Iron Oxide Nanoparticles. Progress in Natural Science: Materials International, 26(5), 440-448. https://doi.org/10.1016/j.pnsc.2016.09.004
[43] Obaidat, I. M., Issa, B., & Haik, Y. (2015). Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials, 5(1), 63-89. https://doi.org/10.3390/nano5010063
[44] Dennis, C. L., & Ivkov, R. (2013). Physics of Heat Generation Using Magnetic Nanoparticles for Hyperthermia. International Journal of Hyperthermia, 29(8), 715-729. https://doi.org/10.3109/02656736.2013.836758
[45] Chakraborty, A. R., Zohora Toma, F. T., Alam, K., Yousuf, S. B., & Hossain, K. S. (2024). Influence of Annealing Temperature On Fe2O3 Nanoparticles: Synthesis Optimization and Structural, Optical, Morphological, and Magnetic Properties Characterization for Advanced Technological Applications. Heliyon, 10(21), e40000. https://doi.org/10.1016/j.heliyon.2024.e40000
[46] Lemine, O. M., Madkhali, N., Alshammari, M., Algessair, S., Gismelseed, A., El Mir, L., Hjiri, M., Yousif, A. A., & El-Boubbou, K. (2021). Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency. Materials (Basel, Switzerland), 14(19), 5691. https://doi.org/10.3390/ma14195691
[47] Fernández-Álvarez, F., Caro, C., García-García, C., García-Martín, M. L., & Arias, J. L. (2021). Engineering of Stealth (Maghemite / PLGA) / Chitosan (Core/Shell)/ Shell Nanocomposites with Potential Applications for Combined MRI and Hyperthermia Against Cancer. Journal of Materials Chemistry B, 9(24), 4963-4980. https://doi.org/10.1039/D1TB00354B
[48] Supino, R. (1995). MTT Assays. In: O’Hare, S., Atterwill, C.K. (Eds.), In Vitro Toxicity Testing Protocols. Methods in Molecular Biology™, vol. 43 (pp. 137-149). Humana Press. https://doi.org/10.1385/0-89603-282-5:137
[49] Sharifi, M., Rezayat, S. M., Akhtari, K., Hasan, A., & Falahati, M. (2020). Fabrication and Evaluation of Anti-Cancer Efficacy of Lactoferrin-Coated Maghemite and Magnetite Nanoparticles. Journal of Biomolecular Structure and Dynamics, 38(10), 2945-2954. https://doi.org/10.1080/07391102.2019.1650114