[1] Baronzio, G., Parmar, G., Ballerini, M., Szasz, A., Baronzio, M., & Cassutti, V. (2014). A Brief Overview of Hyperthermia in Cancer Treatment.
Journal of Integrative Oncology, 3(1), 115.
https://doi.org/10.4172/2329-6771.1000115
[2] Peiravi, M., Eslami, H., Ansari, M., & Zare-Zardini, H. (2022). Magnetic Hyperthermia: Potentials and Limitations.
Journal of the Indian Chemical Society, 99(1), 100269.
https://doi.org/10.1016/j.jics.2021.100269
[3] Sarani, M., Barani, M., Darijani, S., Adeli-Sardou, M., Aghabozorgi, F., & Sardashti-Birjandi, A. (2024). In Vitro Cytotoxic Study of Synthesized Ag and Ce Dual- Doped α-Fe
2O
3 Nanoparticles on NIH/3T3 and U87 Cell Lines.
Inorganic Chemistry Communications, 170(Part 1), 113236.
https://doi.org/10.1016/j.inoche.2024.113236
[4] Mehdigholami, S., & Koohestanian, E. (2023). Fe
3O
4@SiO
2/AEPTMS/Fe(OTf)
3: An Efficient Superparamagnetic Nanocatalyst for the Protecting of Alcohols.
Journal of Particle Science and Technology, 9(1), 1-9.
https://doi.org/10.22104/jpst.2023.6188.1224
[5] Koohestanian, E., & Mehdigholami, S. (2023). Synthesis of Hematite Nanoparticles by Ball Milling and the Study of the Magnetic Properties and its Microstructure.
Chemical Process Design, 2(2), 52-59.
https://doi.org/10.22111/cpd.2024.47291.1030
[7] Mohassel, R., Amiri, M., Kareem Abbas, A., Sobhani, A., Ashrafi, M., Moayedi, H., & Salavati-Niasari, M. (2020). Pechini Synthesis Using Propylene Glycol and Various Acid as Stabilizing Agents and Characterization of Gd
2NiMnO
6 Ceramic Nanostructures with Good Photocatalytic Properties for Removal of Organic Dyes in Water.
Journal of Materials Research and Technology, 9(2), 1720-1733.
https://doi.org/10.1016/j.jmrt.2019.12.003
[8] Sakurai, S., Namai, A., Hashimoto, K., & Ohkoshi, S. (2009). First Observation of Phase Transformation of All Four Fe
2O
3 Phases (γ → ε → β → α-Phase).
Journal of the American Chemical Society, 131(51), 18299-18303.
https://doi.org/10.1021/ja9046069
[9] Vangijzegem, T., Stanicki, D., & Laurent, S. (2019). Magnetic Iron Oxide Nanoparticles for Drug Delivery: Applications and Characteristics.
Expert Opinion on Drug Delivery, 16(1), 69-78.
https://doi.org/10.1080/17425247.2019.1554647
[10] Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Roux, S., Wilhelm, C., Gazeau, F., & Bazzi, R. (2012). Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia.
The Journal of Physical Chemistry C, 116(29), 15702-15712.
https://doi.org/10.1021/jp3025478
[11] Zinatloo-Ajabshir, S., Mahmoudi-Moghaddam, H., Amiri, M., & Akbari Javar, H. (2024). A Green Route for the Synthesis of Sponge-Like Pr
6O
11 Nanoparticles and Their Application for the Development of Chlorambucil Sensor.
Measurement, 235, 114924.
https://doi.org/10.1016/j.measurement.2024.114924
[12] Baladi, M., Amiri, M., Mohammadi, P., Mahdi, K. S., Golshani, Z., Razavi, R., Salavati-Niasari, M. (2023). Green Sol-Gel Synthesis of Hydroxyapatite nanoparticles Using Lemon Extract as Capping Agent and Investigation of Its Anti-Cancer Activity Against Human Cancer Cell Lines (T98, and SHSY5).
Arabian Journal of Chemistry, 16(4), 104646.
https://doi.org/10.1016/j.arabjc.2023.104646
[13] Maiti, D., Manju, U., Velaga, S., & Sujatha Devi, P. (2013). Phase Evolution and Growth of Iron Oxide Nanoparticles: Effect of Hydrazine Addition During Sonication.
Crystal Growth & Design, 13(8), 3637-3644.
https://doi.org/10.1021/cg400627c
[14] Joshi, N., Pandey, D. K., Mistry, B. G., & Singh, D. K. (2023). Metal Oxide Nanoparticles: Synthesis, Properties, Characterization, and Applications. In: Singh, D. K., Singh, S., & Singh, P. (Eds.)
Nanomaterials (pp. 103-144). Springer.
https://doi.org/10.1007/978-981-19-7963-7_5
[15] Hujjatul Islam, M., Paul, M. T. Y., Burheim, O. S., & Pollet, B. G. (2019). Recent Developments in the Sonoelectrochemical Synthesis of Nanomaterials.
Ultrasonics Sonochemistry, 59, 104711.
https://doi.org/10.1016/j.ultsonch.2019.104711
[16] Lee, Y.-J., Jun, K.-W., Park, J.-Y., Potdar, H. S., Chikate, R. C. (2008). A Simple Chemical Route for the Synthesis of
γ-Fe
2O
3 Nanoparticles Dispersed in Organic Solvents Via an Iron–Hydroxy Oleate Precursor.
Journal of Industrial and Engineering Chemistry, 14(1), 38-44.
https://doi.org/10.1016/j.jiec.2007.08.009
[17] Nomngongo, P. N. (2023). Nanoadsorbents: Synthesis, Characterization, and Industrial Applications. In Verma, C., Aslam, J., & Ehtisham Khan, M. (Eds.).
Micro and Nano Technologies, Adsorption Through Advanced Nanoscale Materials (pp. 23-45). Elsevier.
https://doi.org/10.1016/B978-0-443-18456-7.00002-X
[19] Halgamuge, M. N., & Song, T. (2020). Optimizing Heating Efficiency of Hyperthermia: Specific Loss Power of Magnetic Sphere Composed of Superparamagnetic Nanoparticles.
Progress in Electromagnetics Research B, 87, 1-17.
https://doi.org/10.2528/PIERB19121702
[20] Noor Azreen, A. R., Nur Amalina, M., Aziz, N. D. A., Badar, N., & Kamarulzaman, N. (2012). Synthesis and Characterization of Fe
2O
3 Prepared Via Sol-Gel Method. In
Advanced Materials Research (Vol. 545, pp. 410-413). Trans Tech Publications, Ltd.
https://doi.org/10.4028/www.scientific.net/amr.545.410
[21] Lemine, O. (2009). Microstructural Characterization of α-Fe2O3 Nanoparticles Using, XRD Line Profiles Analysis, FE-SEM and FT-IR.
Superlattices and Microstructures, 45(6), 576-582.
https://doi.org/10.1016/j.spmi.2009.02.004
[23] Espinoza, M. J. C., Lin, K.-S., Weng, M.-T., Kunene, S. C., & Wang, S. S.-S. (2021).
In Vitro Studies of Pluronic F127 Coated Magnetic Silica Nanocarriers for Drug Delivery System Targeting Liver Cancer.
European Polymer Journal, 153, 110504.
https://doi.org/10.1016/j.eurpolymj.2021.110504
[24] Hassanzadeh-Tabrizi, S. (2021). Synthesis of NiFe2O4/ Ag Nanoparticles Immobilized on Mesoporous
g-C
3N
4 Sheets and Application for Degradation of Antibiotics.
Journal of Photochemistry and Photobiology A: Chemistry, 418, 113398.
https://doi.org/10.1016/j.jphotochem.2021.113398
[25] Qian, Z., Zhao, N., Xu, S., & Yuan, W. (2024).
In Situ Injectable Thermoresponsive Nanocomposite Hydrogel Based on Hydroxypropyl Chitosan for Precise Synergistic Calcium-Overload, Photodynamic and Photothermal Tumor Therapy.
Carbohydrate Polymers, 324, 121487.
https://doi.org/10.1016/j.carbpol.2023.121487
[26] Golmohammad, M., Golestanifard, F., & Mirhabibi, A., (2016). Synthesis and Characterization of Maghemite as an Anode for Lithium-Ion Batteries.
International Journal of Electrochemical Science, 11(8), 6432-6442.
https://doi.org/10.20964/2016.08.55
[27] Nazari, M., Ghasemi, N., Maddah, H., & Mousavi Motlagh, M. (2014). Synthesis and Characterization of Maghemite Nanopowders by Chemical Precipitation Method.
Journal of Nanostructure in Chemistry, 4, 99.
https://doi.org/10.1007/s40097-014-0099-9
[28] Wattanathana, W., Suetrong, N., Kongsamai, P., Chansaenpak, K., Chuanopparat, N., Hanlumyuang, Y., Kanjanaboos, P., & Wannapaiboon, S. (2021). Crystallographic and Spectroscopic Investigations on Oxidative Coordination in the Heteroleptic Mononuclear Complex of Cerium and Benzoxazine Dimer.
Molecules, 26(17), 5410.
https://doi.org/10.3390/molecules26175410
[29] Rahman, L., Bhattacharjee, S., Islam, S., Zahan, F., Biswas, B., & Sharmin, N. (2020). A Study on the Preparation and Characterization of Maghemite (
γ-Fe
2O
3) Particles from Iron-Containing Waste Materials.
Journal of Asian Ceramic Societies, 8(4), 1083-1094.
https://doi.org/10.1080/21870764.2020.1812838
[30] Sohrabijam, Z., Zamanian, A., Saidifar, M., Nouri, A. (2015). Prepartion and Characterization of Superparamagnetic Chitosan Coated Maghemite (
γ-Fe
2O
3) for Gene Delivery.
Procedia Materials Science, 11, 282- 286.
https://doi.org/10.1016/j.mspro.2015.11.051
[31] Lee, J. H., Ju, J. E., Kim, B. I., Pak, P. J., Choi, E.- K., Lee, H.-S., & Chung, N. (2014). Rod-Shaped Iron Oxide Nanoparticles Are More Toxic than Sphere-Shaped Nanoparticles to Murine Macrophage Cells.
Environmental Toxicology and Chemistry, 33(12), 2759- 2766.
https://doi.org/10.1002/etc.2735
[33] Kaflé, B. P. (2020). Introduction to Nanomaterials and Application of UV–Visible Spectroscopy for Their Characterization. In
Chemical Analysis and Material Characterization by Spectrophotometry (pp. 147-198) Elsevier.
https://doi.org/10.1016/B978-0-12-814866-2.00006-3
[34] Upadhyay, S., Parekh, K., & Pandey, B. (2016). Influence of Crystallite Size on the Magnetic Properties of Fe
3O
4 Nanoparticles.
Journal of Alloys and Compounds, 678, 478-485.
https://doi.org/10.1016/j.jallcom.2016.03.279
[35] Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe
3O
4 Nanoparticles.
Scientific Reports, 7, 9894.
https://doi.org/10.1038/s41598-017-09897-5
[36] Hu, C., Zhang, Z., Liu, H., Gao, P., & Wang, Z. L. (2006). Direct Synthesis and Structure Characterization of Ultrafine CeO
2 Nanoparticles.
Nanotechnology, 17(24), 5983.
https://doi.org/10.1088/0957-4484/17/24/013
[37] Ma, N., Ma, C., Li, C., Wang, T., Tang, Y., Wang, H., Moul, X., Chen, Z., & Hel, N. (2013). Influence of Nanoparticle Shape, Size, and Surface Functionalization on Cellular Uptake.
Journal of Nanoscience and Nanotechnology,
13(10), 6485-6498.
https://doi.org/10.1166/jnn.2013.7525
[38] Cooley, M., Sarode, A., Hoore, M., Fedosov, D. A., Mitragotri, S., & Sen Gupta, A. (2018). Influence of Particle Size and Shape on Their Margination and Wall- Adhesion: Implications in Drug Delivery Vehicle Design Across Nano-to-Micro Scale.
Nanoscale, 10(32), 15350- 15364.
https://doi.org/10.1039/C8NR04042G
[39] Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y. S., & Haynes, C. L. (2012). Assessing nanoparticle toxicity.
Annual Review of Analytical Chemistry (Palo Alto, Calif.), 5, 181-205.
https://doi.org/10.1146/annurev-anchem-062011-143134
[40] Vijayasri, G., Bhaskar, R. C., & Rajesh, J. (2022). An Essential Advancement of Magnetic Nanoparticles. In Hussain, C. M., & Patankar, K. K. (Eds.),
Fundamentals and Industrial Applications of Magnetic Nanoparticles (pp. 41-63). Elsevier.
https://doi.org/10.1016/B978-0-12-822819-7.00004-1
[41] Pucci, C., Degl'Innocenti, A., Belenli Gümüş, M., & Ciofani, G. (2022). Superparamagnetic Iron Oxide Nanoparticles for Magnetic Hyperthermia: Recent Advancements, Molecular Effects, and Future Directions in the Omics Era.
Biomaterials Science, 10(9), 2103-2121.
https://doi.org/10.1039/D1BM01963E
[42] Abenojar, E. C., Wickramasinghe, S., Bas-Concepcion, J., Samia, A. C. S. (2016). Structural Effects on the Magnetic Hyperthermia Properties of Iron Oxide Nanoparticles.
Progress in Natural Science: Materials International, 26(5), 440-448.
https://doi.org/10.1016/j.pnsc.2016.09.004
[43] Obaidat, I. M., Issa, B., & Haik, Y. (2015). Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia.
Nanomaterials, 5(1), 63-89.
https://doi.org/10.3390/nano5010063
[45] Chakraborty, A. R., Zohora Toma, F. T., Alam, K., Yousuf, S. B., & Hossain, K. S. (2024). Influence of Annealing Temperature On Fe
2O
3 Nanoparticles: Synthesis Optimization and Structural, Optical, Morphological, and Magnetic Properties Characterization for Advanced Technological Applications.
Heliyon, 10(21), e40000.
https://doi.org/10.1016/j.heliyon.2024.e40000
[46] Lemine, O. M., Madkhali, N., Alshammari, M., Algessair, S., Gismelseed, A., El Mir, L., Hjiri, M., Yousif, A. A., & El-Boubbou, K. (2021). Maghemite (
γ-Fe
2O
3) and
γ-Fe
2O
3-TiO
2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.
Materials (Basel, Switzerland), 14(19), 5691.
https://doi.org/10.3390/ma14195691
[47] Fernández-Álvarez, F., Caro, C., García-García, C., García-Martín, M. L., & Arias, J. L. (2021). Engineering of Stealth (Maghemite / PLGA) / Chitosan (Core/Shell)/ Shell Nanocomposites with Potential Applications for Combined MRI and Hyperthermia Against Cancer.
Journal of Materials Chemistry B, 9(24), 4963-4980.
https://doi.org/10.1039/D1TB00354B
[48] Supino, R. (1995). MTT Assays. In: O’Hare, S., Atterwill, C.K. (Eds.),
In Vitro Toxicity Testing Protocols. Methods in Molecular Biology™, vol. 43 (pp. 137-149). Humana Press.
https://doi.org/10.1385/0-89603-282-5:137
[49] Sharifi, M., Rezayat, S. M., Akhtari, K., Hasan, A., & Falahati, M. (2020). Fabrication and Evaluation of Anti-Cancer Efficacy of Lactoferrin-Coated Maghemite and Magnetite Nanoparticles.
Journal of Biomolecular Structure and Dynamics, 38(10), 2945-2954.
https://doi.org/10.1080/07391102.2019.1650114