Ultrasonic assisted cold compaction of CP titanium and Ti-6Al-4V alloy

Document Type : Research Article

Authors

1 Department of Industrial Design, Faculty of Art, Alzahra University, Tehran. Iran

2 Department of Mechanical Engineering, University of Science and Technology, Tehran, Iran

3 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

4 Materials and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

Superimposed ultrasonic vibration during compaction of commercially pure (CP) titanium and Ti-6Al-4V alloy improves the relative density and quality of the compact. The underlying mechanisms of this process are not well understood. In this study, the influence of ultrasonic vibrations on the densification behavior of square packing of Ti-6Al-4V and CP-Ti powders during cold compaction was investigated using the Multi-Particle Finite Element Method (MPFEM). Acoustic softening and friction reduction were introduced in this model. The density-pressure curves show that ultrasonic vibration improves the densification of these powders, owing to the acoustic softening that leads to a decline in the required pressure. It has been found that the ultrasonic effect on reducing the compaction pressure and stress in the case of pure titanium is greater than that of titanium alloy. In addition, an increase in the intensity and amplitude of ultrasonic vibration reduces stress. The rotation and rearrangement of the particles caused by the reduction of friction lead to an enhancement in the compression capability.

Graphical Abstract

Ultrasonic assisted cold compaction of CP titanium and Ti-6Al-4V alloy

Highlights

  • The multi-particle finite element method was used to simulate ultrasonic-assisted cold compaction of CP-Ti and Ti-6Al-4V.
    Acoustic softening was studied for each material.
  • Friction reduction due to ultrasonic vibration was investigated.
  • Reduction of compaction pressure was recorded while applying ultrasonic vibration.
  • Higher particle rearrangement and plastic deformation were found due to vibration.

Keywords

Main Subjects


Copyright © 2024 The Author(s). Published by IROST.

[1] Donachie, M. J. (2000). Titanium: A Technical Guide (2nd ed.). ASM International. https://doi.org/10.31399/asm.tb.ttg2.9781627082693
[2] Amini, S. Farzin, M., & Mohammadi, A. (2023). An Experimental Study on Ultrasonic-assisted Hot Incremental Sheet Metal Forming of Ti–6Al–4V. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1923-1935. https://doi.org/10.1007/s40997-023-00602-8
[3] Esteban, P. G., Thomas, Y., Baril, E., Ruiz-Navas, E. M., & Gordo, E. (2011). Study of Compaction and Ejection of Hydrided-Dehydrided Titanium Powder. Metals and Materials International, 17, 45-55. https://doi.org/10.1007/s12540-011-0207-z
[4] Liu, Y., Chen, L. F., Tang, H. P., Liu, C. T., Liu, B., & Huang, B. Y. (2006). Design of Powder Metallurgy Titanium Alloys and Composites, Materials Science and Engineering: A, 418(1-2), 25-35. https://doi.org/10.1016/j.msea.2005.10.057
[5] Qian, M., Froes, F. H. (2015). Titanium Powder Metallurgy Science, Technology and Applications (1st ed.). Elsevier. https://doi.org/10.1016/C2013-0-13619-7
[6] Fartashvand, V., Abdullah, A., & Sadough Vanini, S. A. (2017). Effects of High Power Ultrasonic Vibration on the Cold Compaction of Titanium. Ultrasonics Sonochemistry, 36, 155-161. https://doi.org/10.1016/j.ultsonch.2016.11.017
[7] Fartashvand, V., Abedini, R., & Abdullah, A. (2022). Influence of Ultrasonic Vibrations on the Properties of Press-and-Sintered Titanium. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(11), 1518-1525. https://doi.org/10.1177/09544054221078386
[8] Abedini, R., Fartashvand, V., Abdullah, A., & Alizadeh,  Y. (2022). Evaluation of Process Parameters and Ultrasonic Vibration in Hot Pressing of Metal Powders. Materials Science and Engineering: B, 281, 115731. https://doi.org/10.1016/j.mseb.2022.115731
[9] Dong, S. & Dapino, M. J. (2014). Elastic–Plastic Cube Model for Ultrasonic Friction Reduction via Poisson’s Effect. Ultrasonics, 54(1), 343-350. https://doi.org/10.1016/j.ultras.2013.05.011
[10] Meng, B., Cao, B. N.,  Wan, M., Wang, C. J., & Shan,  D. B. (2019). Constitutive Behavior and Microstructural Evolution in Ultrasonic Vibration Assisted Deformation of Ultrathin Superalloy Sheet. International Journal of Mechanical Sciences, 157-158, 609-618. https://doi.org/10.1016/j.ijmecsci.2019.05.009
[11] Sancin, P., Caputo, O., Cavallari, C., Passerini, N., Rodriguez, L., Cini, M., & Fini, A. (1999). Effects of Ultrasound-Assisted Compaction on Ketoprofen/ Eudragit S100 Mixtures. European Journal of Pharmaceutical Sciences, 7(3), 207-213. https://doi.org/10.1016/S0928-0987(98)00022-0
[12] Abedini, R., Abdullah, A., Alizadeh, Y., & Fartashvand V. (2017). A Roadmap for Application of High Power Ultrasonic Vibrations in Metal Forming. Modares Mechanical Engineering, 16(10), 323-334. 
[13] Abedini, R., Fartashvand, V., Abdullah, A., & Alizadeh, Y. (2024). Finite Element Modelling of Ultrasonic Assisted Hot Pressing of Metal Powder. Mechanics of Time-Dependent Materials, 28, 3263-3278. https://doi.org/10.1007/s11043-024-09735-y
[14] Kumar, N., Bharti, A., & Saxena, K. K. (2021). A Re-Investigation: Effect of Powder Metallurgy Parameters on the Physical and Mechanical Properties of Aluminium Matrix Composites. Materials Today: Proceedings, 44(Part 1), 2188-2193. https://doi.org/10.1016/j.matpr.2020.12.351
[15] Kaseb, I., Moazami-Goudarzi, M., & Abbasi, A. R. (2019). Effect of Particle Size on the Compressibility and Sintering of Titanium Powders. Iranian Journal of Materials Forming, 6(2), 42-51. https://doi.org/10.22099/ijmf.2019.34264.1134
[16] Zahraee, S. M. (2016). Experimental Investigation of Metal Powder Compaction without Using Lubricant. Journal of Particle Science and Technology, 2(3), 141-149. https://doi.org/10.22104/jpst.2016.445
[17] Procopio, A. T., & Zavaliangos, A. (2005). Simulation of Multi-Axial Compaction of Granular Media from Loose to High Relative Densities. Journal of the Mechanics and Physics of Solids, 53(7), 1523-1551. https://doi.org/10.1016/j.jmps.2005.02.007
[18] Huang, F., An, X., Zhang, Y., & Yu, A. B. (2017). Multi-Particle FEM Simulation of 2D Compaction on Binary Al/SiC Composite Powders. Powder Technology, 314, 39-48. https://doi.org/10.1016/j.powtec.2017.03.017
[19] Korim, N. S., & Hu, L. (2020). Study the Densification Behavior and Cold Compaction Mechanisms of Solid Particles-Based Powder and Spongy Particles-Based Powder Using a Multi-Particle Finite Element Method. Materials Research Express, 7(5), 056509. https://doi.org/10.1088/2053-1591/ab8cf6
[20] Lee, K. H., Lee, J. M., & Kim, B. M. (2009).  Densification Simulation of Compacted Al Powders Using Multi-Particle Finite Element Method. Transactions of Nonferrous Metals Society of China, 19(Suppl. 1), s68-s75. https://doi.org/10.1016/S1003-6326(10)60247-6
[21] Feng, Y., Mei, D., & Wang, Y. (2019). Cohesive Zone Method Based Multi-Particle Finite Element Simulation of Compaction Densification Process of Al and NaCl Laminar Composite Powders. Journal of Physics and Chemistry of Solids, 134, 35-42. https://doi.org/10.1016/j.jpcs.2019.05.020
[22] Han, P., An, X., Wang, D., Fu, H., Yang, X., Zhang,  H.  & Zou, Z. (2020). MPFEM Simulation of Compaction Densification Behavior of Fe-Al Composite Powders with Different Size Ratios. Journal of Alloys and Compounds, 741, 473-481. https://doi.org/10.1016/j.jallcom.2018.01.198
[23] Zhou, J., Zhu, C., Zhang, W., Ai, W., Zhang, X., &  Liu, X. (2020). Experimental and 3D MPFEM Simulation Study on the Green Density of Ti–6Al–4V Powder Compact During Uniaxial High Velocity Compaction. Journal of Alloys and Compounds, 817, 153226. https://doi.org/10.1016/j.jallcom.2019.153226
[24] Xu, L., Wang, Y., Li, C., Ji, G., & Mi, G.(2021). MPFEM Simulation on Hot-Pressing Densification Process of SiC Particle/6061Al Composite Powders. Journal of Physics and Chemistry of Solids, 159, 110259. https://doi.org/10.1016/j.jpcs.2021.110259
[25] Gustafsson, G., Häggblad, H. A., & Jonsén, P. (2013). Multi-Particle Finite Element Modelling of the Compression of Iron Ore Pellets with Statistically Distributed Geometric and Material Data. Powder Technology, 239, 231-238. https://doi.org/10.1016/j.powtec.2013.02.005
[26] Zhang, Y. X., An, X. Z., & Zhang, Y. L. (2015). Multi-Particle FEM Modeling on Microscopic Behavior of 2D Particle Compaction. Applied Physics A, 118, 1015-1021. https://doi.org/10.1007/s00339-014-8861-x
[27] Wu, W., Jiang, G., Wagoner, R. H., & Daehn, G. S. (2000). Experimental and Numerical Investigation of Idealized Consolidation. Part 1: Static Compaction. Acta Materialia, 48(17), 4323-4330. https://doi.org/10.1016/S1359-6454(00)00206-8
[28] Xin, X. J., Jayaraman, P., Daehn, G. S., & Wagoner, R. H. (2003). Investigation of Yield Surface of Monolithic and Composite Powders by Explicit Finite Element Simulation. International Journal of Mechanical Sciences, 45(4), 707-723. https://doi.org/10.1016/S0020-7403(03)00107-3
[29] Fartashvand, V., Abdullah, A., & Sadough Vanini, S. A. (2017). Investigation of Ti-6Al-4V Alloy Acoustic Softening. Ultrasonics Sonochemistry, 38, 744-749. https://doi.org/10.1016/j.ultsonch.2016.07.007
[30] Sadeghi, M., Fartashvand, V., Abdullah, A., Fallahi Arezoodar, A. R., & Abedini, R. (2022). Experimental Investigation of Vibrational Mode Shape Influence on Compression Behaviour of Ti-6Al-4V Alloy Under Superimposed Ultrasonic Vibration. Journal of Solid and Fluid Mechanics, 12(4), 55-68. https://doi.org/10.22044/jsfm.2022.11100.3452
[31] Zhou, H., Cui, H., Qin, Q. H., Wang, H., & Shen, Y.(2017). A Comparative Study of Mechanical and Microstructural Characteristics of Aluminium and Titanium Undergoing Ultrasonic Assisted Compression Testing. Materials Science and Engineering: A, 682, 376-388. https://doi.org/10.1016/j.msea.2016.11.021
[32] Boyer, R., Welsch, G., & Collings, E. W. (1994). Material Properties Handbook: Titanium Alloys. ASM International.