[2] Amini, S. Farzin, M., & Mohammadi, A. (2023). An Experimental Study on Ultrasonic-assisted Hot Incremental Sheet Metal Forming of Ti–6Al–4V.
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1923-1935.
https://doi.org/10.1007/s40997-023-00602-8
[3] Esteban, P. G., Thomas, Y., Baril, E., Ruiz-Navas, E. M., & Gordo, E. (2011). Study of Compaction and Ejection of Hydrided-Dehydrided Titanium Powder.
Metals and Materials International, 17, 45-55.
https://doi.org/10.1007/s12540-011-0207-z
[4] Liu, Y., Chen, L. F., Tang, H. P., Liu, C. T., Liu, B., & Huang, B. Y. (2006). Design of Powder Metallurgy Titanium Alloys and Composites,
Materials Science and Engineering: A, 418(1-2), 25-35.
https://doi.org/10.1016/j.msea.2005.10.057
[6] Fartashvand, V., Abdullah, A., & Sadough Vanini, S. A. (2017). Effects of High Power Ultrasonic Vibration on the Cold Compaction of Titanium.
Ultrasonics Sonochemistry, 36, 155-161.
https://doi.org/10.1016/j.ultsonch.2016.11.017
[7] Fartashvand, V., Abedini, R., & Abdullah, A. (2022). Influence of Ultrasonic Vibrations on the Properties of Press-and-Sintered Titanium.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(11), 1518-1525.
https://doi.org/10.1177/09544054221078386
[8] Abedini, R., Fartashvand, V., Abdullah, A., & Alizadeh, Y. (2022). Evaluation of Process Parameters and Ultrasonic Vibration in Hot Pressing of Metal Powders.
Materials Science and Engineering: B, 281, 115731.
https://doi.org/10.1016/j.mseb.2022.115731
[10] Meng, B., Cao, B. N., Wan, M., Wang, C. J., & Shan, D. B. (2019). Constitutive Behavior and Microstructural Evolution in Ultrasonic Vibration Assisted Deformation of Ultrathin Superalloy Sheet.
International Journal of Mechanical Sciences, 157-158, 609-618.
https://doi.org/10.1016/j.ijmecsci.2019.05.009
[11] Sancin, P., Caputo, O., Cavallari, C., Passerini, N., Rodriguez, L., Cini, M., & Fini, A. (1999). Effects of Ultrasound-Assisted Compaction on Ketoprofen/ Eudragit S100 Mixtures.
European Journal of Pharmaceutical Sciences, 7(3), 207-213.
https://doi.org/10.1016/S0928-0987(98)00022-0
[12] Abedini, R., Abdullah, A., Alizadeh, Y., & Fartashvand V. (2017). A Roadmap for Application of High Power Ultrasonic Vibrations in Metal Forming. Modares Mechanical Engineering, 16(10), 323-334.
[13] Abedini, R., Fartashvand, V., Abdullah, A., & Alizadeh, Y. (2024). Finite Element Modelling of Ultrasonic Assisted Hot Pressing of Metal Powder.
Mechanics of Time-Dependent Materials, 28, 3263-3278.
https://doi.org/10.1007/s11043-024-09735-y
[14] Kumar, N., Bharti, A., & Saxena, K. K. (2021). A Re-Investigation: Effect of Powder Metallurgy Parameters on the Physical and Mechanical Properties of Aluminium Matrix Composites.
Materials Today: Proceedings, 44(Part 1), 2188-2193.
https://doi.org/10.1016/j.matpr.2020.12.351
[15] Kaseb, I., Moazami-Goudarzi, M., & Abbasi, A. R. (2019). Effect of Particle Size on the Compressibility and Sintering of Titanium Powders.
Iranian Journal of Materials Forming, 6(2), 42-51.
https://doi.org/10.22099/ijmf.2019.34264.1134
[16] Zahraee, S. M. (2016). Experimental Investigation of Metal Powder Compaction without Using Lubricant.
Journal of Particle Science and Technology, 2(3), 141-149.
https://doi.org/10.22104/jpst.2016.445
[17] Procopio, A. T., & Zavaliangos, A. (2005). Simulation of Multi-Axial Compaction of Granular Media from Loose to High Relative Densities.
Journal of the Mechanics and Physics of Solids, 53(7), 1523-1551.
https://doi.org/10.1016/j.jmps.2005.02.007
[19] Korim, N. S., & Hu, L. (2020). Study the Densification Behavior and Cold Compaction Mechanisms of Solid Particles-Based Powder and Spongy Particles-Based Powder Using a Multi-Particle Finite Element Method.
Materials Research Express, 7(5), 056509.
https://doi.org/10.1088/2053-1591/ab8cf6
[20] Lee, K. H., Lee, J. M., & Kim, B. M. (2009). Densification Simulation of Compacted Al Powders Using Multi-Particle Finite Element Method.
Transactions of Nonferrous Metals Society of China, 19(Suppl. 1), s68-s75.
https://doi.org/10.1016/S1003-6326(10)60247-6
[21] Feng, Y., Mei, D., & Wang, Y. (2019). Cohesive Zone Method Based Multi-Particle Finite Element Simulation of Compaction Densification Process of Al and NaCl Laminar Composite Powders. J
ournal of Physics and Chemistry of Solids, 134, 35-42.
https://doi.org/10.1016/j.jpcs.2019.05.020
[22] Han, P., An, X., Wang, D., Fu, H., Yang, X., Zhang, H. & Zou, Z. (2020). MPFEM Simulation of Compaction Densification Behavior of Fe-Al Composite Powders with Different Size Ratios.
Journal of Alloys and Compounds, 741, 473-481.
https://doi.org/10.1016/j.jallcom.2018.01.198
[23] Zhou, J., Zhu, C., Zhang, W., Ai, W., Zhang, X., & Liu, X. (2020). Experimental and 3D MPFEM Simulation Study on the Green Density of Ti–6Al–4V Powder Compact During Uniaxial High Velocity Compaction.
Journal of Alloys and Compounds, 817, 153226.
https://doi.org/10.1016/j.jallcom.2019.153226
[24] Xu, L., Wang, Y., Li, C., Ji, G., & Mi, G.(2021). MPFEM Simulation on Hot-Pressing Densification Process of SiC Particle/6061Al Composite Powders.
Journal of Physics and Chemistry of Solids, 159, 110259.
https://doi.org/10.1016/j.jpcs.2021.110259
[25] Gustafsson, G., Häggblad, H. A., & Jonsén, P. (2013). Multi-Particle Finite Element Modelling of the Compression of Iron Ore Pellets with Statistically Distributed Geometric and Material Data.
Powder Technology, 239, 231-238.
https://doi.org/10.1016/j.powtec.2013.02.005
[26] Zhang, Y. X., An, X. Z., & Zhang, Y. L. (2015). Multi-Particle FEM Modeling on Microscopic Behavior of 2D Particle Compaction.
Applied Physics A, 118, 1015-1021.
https://doi.org/10.1007/s00339-014-8861-x
[27] Wu, W., Jiang, G., Wagoner, R. H., & Daehn, G. S. (2000). Experimental and Numerical Investigation of Idealized Consolidation. Part 1: Static Compaction.
Acta Materialia, 48(17), 4323-4330.
https://doi.org/10.1016/S1359-6454(00)00206-8
[28] Xin, X. J., Jayaraman, P., Daehn, G. S., & Wagoner, R. H. (2003). Investigation of Yield Surface of Monolithic and Composite Powders by Explicit Finite Element Simulation.
International Journal of Mechanical Sciences, 45(4), 707-723.
https://doi.org/10.1016/S0020-7403(03)00107-3
[30] Sadeghi, M., Fartashvand, V., Abdullah, A., Fallahi Arezoodar, A. R., & Abedini, R. (2022). Experimental Investigation of Vibrational Mode Shape Influence on Compression Behaviour of Ti-6Al-4V Alloy Under Superimposed Ultrasonic Vibration.
Journal of Solid and Fluid Mechanics, 12(4), 55-68.
https://doi.org/10.22044/jsfm.2022.11100.3452
[31] Zhou, H., Cui, H., Qin, Q. H., Wang, H., & Shen, Y.(2017). A Comparative Study of Mechanical and Microstructural Characteristics of Aluminium and Titanium Undergoing Ultrasonic Assisted Compression Testing.
Materials Science and Engineering: A, 682, 376-388.
https://doi.org/10.1016/j.msea.2016.11.021
[32] Boyer, R., Welsch, G., & Collings, E. W. (1994). Material Properties Handbook: Titanium Alloys. ASM International.