[1] Khabazipour, M. & Anbia, M. (2021). Process Optimization and Adsorption Modeling Using Hierarchical Zif-8 Modified with Lanthanum and Copper for Sulfate Uptake from Aqueous Solution: Kinetic, Isotherm and Thermodynamic Studies. Journal of Inorganic and Organometallic Polymers and Materials, 31, 2401-2424.
https://doi.org/10.1007/s10904-021-01878-6
[3] Salami, A., Bonakdari, H., Akhbari, A., Shamshiri, A., Mousavi, F., Farzin, S. Hassanvand, M. & Noori, A. (2020). Performance Assessment of Modified Clinoptilolite and Magneticn Nanotubes on sulfate Removal and Potential Application in Natural River Samples.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 97, 51-63.
https://doi.org/10.1007/s10847-020-00982-3
[4] Ma, H., Zhang, J., Wang, M. & Sun, S. (2019). Modification of Y-Zeolite with Zirconium for Enhancing the Active Component Loading: Preparation and Sulfate Adsorption Performance of ZrO(OH)2/Y-Zeolite.
ChemistrySelect,4(27), 7981-7990.
https://doi.org/10.1002/slct.201901519
[5] Ma, H., Wang, M., Zhang, J. & Su, S. (2019). Preparation Mechanism of Spherical Amorphous ZrO(OH)2/AlOOH Hybrid Composite Beads for Adsorption Removal of Sulfate Radical from Water.
Materials Letters, 247, 56-59.
https://doi.org/10.1016/j.matlet.2019.03.033
[6] Benne, P., Neubert, L., Sperlich, A., & Ernst, M. (2023). Application of a Carbon Dioxide Regenerated Ion-Exchange Process for Removing Sulphate from Drinking Water: A Simple Approach to Estimate Process Performance. E
nvironmental Science: Water Research & Technology, 9(3), 973-981.
https://doi.org/10.1039/D2EW00655C
[7] Hernández, P., Recio, G., Canales, C., Schwarz, A, Villa-Gomez, D., Southam, G., & Nancucheo, I. (2022). Evaluation of Operating Conditions on Sulfate Reduction from Acidic Wastewater in a Fixed-Bed Bioreactor.
Minerals Engineering, 177, 107370.
https://doi.org/10.1016/j.mineng.2021.107370
[8] Rahmati, M., Yeganeh, G., & Esmaeli, H. (2019). Sulfate Ion Removal from Water Using Activated Carbon Powder Prepared by
Ziziphus Spina-Christi Lotus Leaf.
Acta Chimica Slovenica, 66(4), 888-898.
https://doi.org/10.17344/acsi.2019.5093
[9] Dehnamaki, S., & Zolgharnein, J. (2022). Sulfate Removal by Barium-Terephthalate MOF Synthesized
from Recycled PET-Waste Using Doehlert Design Optimization.
Inorganic Chemistry Communications, 140, 109388.
https://doi.org/10.1016/j.inoche.2022.109388
[10] Zhao, S., Long, Y., Su, Y., Wang, S. Zhang, Z., & Zhang, X. (2021). Cobalt-Enhanced Mass Transfer and Catalytic Production of Sulfate Radicals in MOF-Derived CeO
2 •Co
3O
4 Nanoflowers for Efficient Degradation of Antibiotics,
Small, 17(43), 2101393.
https://doi.org/10.1002/smll.202101393
[11] Salehi, S., & Hosseinifard, M. (2020). Optimized Removal of Phosphate and Nitrate from Aqueous Media using Zirconium Functionalized Nanochitosan-Graphene Oxide Composite. Celloluse, 27, 8859-8883.
[12] Castillo, X., Pizarro, J., Ortiz, C., Cid, H., Florez, M.,De Canck, E., & Van Der Voort, P. (2018). A Cheap Mesoporous Silica from Fly Ash as an Outstanding Adsorbent for Sulfate in Water.
Microporous and Mesoporous Materials, 272, 184-192.
https://doi.org/10.1016/j.micromeso.2018.06.014
[13] Ao, H., Cao, W., Hong, Y., Wu, J., & Wei, L. (2020). Adsorption of Sulfate Ion from Water by Zirconium Oxide-Modified Biochar Derived from Pomelo Peel.
Science of The Total Environment, 708, 135092.
https://doi.org/10.1016/j.scitotenv.2019.135092
[14] Ighalo, J. O., Rangabhashiyam, S., Dulta, K., Umeh, C. T., Iwuozor, K. O., Aniagor, C. O., Eshiemogie, S. O., Iwuchukwu, F. U., & Igwegbe, C. A. (2022). Recent Advances in Hydrochar Application for the Adsorptive Removal of Wastewater Pollutants.
Chemical Engineering Research and Design, 184, 419-456.
https://doi.org/10.1016/j.cherd.2022.06.028
[15] Suresh Kumar, P., Korving, L., Keesman, K., van Loosdrecht, M. C. M., & Witkamp, G. (2019). Effect of Pore Size Distribution and Particle Size of Porous Metal Oxides on Phosphate Adsorption Capacity and Kinetics.
Chemical Engineering Journal, 358, 160-169.
https://doi.org/10.1016/j.cej.2018.09.202
[16] Khalid, W., Kui Cheng, C., Lu, P., Tang, J., Liu, X., Ali, A., Shahab, A., & Wang, X. (2022). Fabrication and Characterization of a Novel Ba2+-Loaded Sawdust Biochar Doped with Iron Oxide for the Super-Adsorption of SO42- from Wastewater.
Chemosphere, 303(Part 3), 135233.
https://doi.org/10.1016/j.chemosphere.2022.135233
[17] Choi, J., Hong, S.-W., Kimb, D.-J., & Lee, S.-H. (2012). Investigation of Phosphate Removal Using Sulphate-Coated Zeolite for Ion Exchange.
Environmental Technology, 33(20), 2329-2335.
https://doi.org/10.1080/09593330.2012.666569
[18] Salimi, A., Shamshiri, A., Jaberi, E., Bonakdari, H., Akhbari, A., Delatolla, R., Hassanvand, M. R., Agharazi, M., Huang, Y. F., Ahmed, A. N., Elshafie, A. (2022). Total Iron Removal from Aqueous Solution by Using Modified Clinoptilolite.
Ain Shams Engineering Journal, 13(1), 101495.
https://doi.org/10.1016/j.asej.2021.05.009
[20] Mercurio, M., Sarkar, B., & Langella, A. (2019).
Modified Clay and Zeolite Nanocomposite Materials,
Environmental and Pharmaceutical Applications, Elsevier.
https://doi.org/10.1016/C2017-0-01250-8
[22] Zhao, Q., Long, C., Jiang, Z., Yin, W., Tang, A., & Yang, H. (2023). Highly Stable Natural Zeolite/Montmorillonite Hybrid Microspheres with Green Preparation Process for Efficient Adsorption of Ammonia Nitrogen in Wastewater.
Applied Clay Science, 243, 106787.
https://doi.org/10.1016/j.clay.2022.106787
[23] Virpiranta, H., Hermanni Sotaniemi, V., Leiviskä, T., Taskila, S., Rämö, J., Barrie Johnson, D., & Tanskanen, J. (2022). Continuous Removal of Sulfate and Metals from Acidic Mining-Impacted Waters at Low Temperature Using a Sulfate-Reducing Bacterial Consortium.
Chemical Engineering Journal, 427, 132050.
https://doi.org/10.1016/j.cej.2021.132050
[24] Zhu, M., Tan, Z., Ji, X., & He, Z. (2022). Removal of Sulfate and Chloride Ions from Reverse Osmosis Concentrate Using a Two-Stage Ultra-High Lime with Aluminum Process.
Journal of Water Process Engineering, 49, 103033.
https://doi.org/10.1016/j.jwpe.2022.103033
[25] Li, H., Chai, L., Cui, J., Zhang, F., Wang, F., & Li, S. (2022). Polypyrrole-Modified Mushroom Residue Activated Carbon for Sulfate and Nitrate Removal from Water: Adsorption Performance and Mechanism.
Journal of Water Process Engineering, 49, 102916.
https://doi.org/10.1016/j.jwpe.2022.102916
[26] Guerrero-Flores, A. D., Elizondo Alvarez, M. A., Flores Alvarez, J. M., & Uribe-Salas, A. (2022). Comparative Ions from Flotation Recycling Water by Aluminum Hydroxide.
Transactions of Nonferraous Metals Society of China, 32(7), 2379-2390.
https://doi.org/10.1016/S1003-6326(22)65954-5
[27] Moreroa-Monyelo, M., Falayi, T., Ntuli, F., & Magwa, N. (2022). Studies Towards the Adsorption of Sulphate Ions from Acid Mine Drainage by Modified Attapulgite Clays.
South African Journal of Chemical Engineering, 42, 241-254.
https://doi.org/10.1016/j.sajce.2022.08.011
[28] Voutetaki, A., Plakas, K. V., Papadopoulos, A. I., Bollas, D., Parcharidis, S., & Seferlis, P. (2023). PilotScale Separation of Lead and Sulfate Ions from Aqueous Solutions Using Electrodialysis: Application and Parameter Optimization for the Battery Industry.
Journal of Cleaner Production, 410, 137200.
https://doi.org/10.1016/j.jclepro.2023.137200
[29] Chatla, A., Almanassra, I. W., Abushawish, A., Laoui, T., Alawadhi, H., Atieh, M. A., & Ghaffour, N. (2023). Sulphate Removal from Aqueous Solutions: State-ofthe-Art Technologies and Future Research Trends.
Desalination, 558, 116615.
https://doi.org/10.1016/j.desal.2023.116615
[30] Zhou, X., Fernández-Palacios, E., Dorado, A. D., Lafuente, J., Gamisans, X. & Gabriel, D. (2024). The Effect of Slime Accumulated in a Long-Term Operating UASB Using Crude Glycerol to Treat S-Rich Wastewater.
Journal of Environmental Sciences, 135, 353-366.
https://doi.org/10.1016/j.jes.2022.11.011
[31] Pratinthong, N., Sangchan, S., Chimupala, Y., & Kijjanapanich, P. (2021). Sulfate Removal from Lignite Coal Mine Drainage in Thailand Using Ettringite Precipitation.
Chemosphere, 285, 131357.
https://doi.org/10.1016/j.chemosphere.2021.131357
[32] Qin, C., Yao, D., Cheng, C., Xie, H., Hu, Z., & Zhang, J. (2022). Influence of Iron Species on the Simultaneous Nitrate and Sulfate Removal in Constructed Wetlands Under Low/High COD Concentrations.
Environmental Research, 212(Part C), 113453.
https://doi.org/10.1016/j.envres.2022.113453
[33] Kennedy, D. A., Mujčin, M., Abou-Zied, C., & Tezel, F. H. (2019). Cation Exchange Modification of Clinoptilolite –Thermodynamic Effects on Adsorption Separations of Carbon Dioxide, Methane, and Nitrogen.
Microporous and Mesoporous Materials, 274, 327-341.
https://doi.org/10.1016/j.micromeso.2018.08.035
[34] Kennedy, D. A., & Tezel, F. H. (2018). Cation Exchange Modification of Clinoptilolite - Screening Analysis for Potential Equilibrium and Kinetic Adsorption Separations Involving Methane, Nitrogen, and Carbon Dioxide.
Microporous and Mesoporous Materials, 262, 235-250.
https://doi.org/10.1016/j.micromeso.2017.11.054
[35] Price, L. A., Jones, Z., Nearchou, A., Stenning, G., Nye, D., & Sartbaeva, A. (2022). The Effect of Cation Exchange on the Pore Geometry of Zeolite L.
AppliedChem, 2(3), 149-159.
https://doi.org/10.3390/appliedchem2030011
[36] Campanile, A., Liguori, B., Ferone, C., Caputo, D. & Aprea, P. (2022). Zeolite-Based Monoliths for Water Softening by Ion Exchange/Precipitation Process.
Scientific Reports, 12, 3686.
https://doi.org/10.1038/s41598-022-07679-2
[37] Łach, M., Grela, A., Pławecka, K., Duarte Guigou, M., Mikuła, J., Komar, N., Bajda, T., & Korniejenko, K. (2022). Surface Modification of Synthetic Zeolites with
Ca and HDTMA Compounds with Determination of Their Phytoavailability and Comparison of CEC and AEC Parameters.
Materials, 15(12), 4083.
https://doi.org/10.3390/ma15124083
[39] Shojaei, S., & Pirkamali, M. (2019). Application of Box–Behnken Design Approach for Removal of Acid Black 26 from Aqueous Solution Using Zeolite: Modeling, Optimization, and Study of Interactive Variables.
Water Conservation Science and Engineering, 4, 13-19.
https://doi.org/10.1007/s41101-019-00064-7
[40] Oyinade, A., SanniKovo, A., & Hill, P. (2016). Synthesis, Characterization and Ion Exchange Isotherm of Zeolite Y Using Box–Behnken Design.
Advanced Powder Technology, 27(2), 750-755.
https://doi.org/10.1016/j.apt.2016.03.002
[41] Mehdi, B., Belkacemi, H., Brahmi-Ingrachen, D., AitBraham, L., & Muhr, L. (2022). Study of Nickel
Adsorption on Nacl-Modified Natural Zeolite Using Response Surface Methodology and Kinetics Modeling.
Groundwater for Sustainable Development, 17, 100757.
https://doi.org/10.1016/j.gsd.2022.100757
[42] Li, M., Feng, C., Zhang, Z., Chen, R., Xue, Q., Gao, C., & Sugiura, N. (2010). Optimization of Process Parameters for Electrochemical Nitrate Removal Using Box–Behnken Design.
Electrochimica Acta, 56(1), 265-270.
https://doi.org/10.1016/j.electacta.2010.08.085
[43] Afshin, S., Rashtbari, Y., Vosough, M., Dargahi, A., Fazlzadeh, M., Behzad, A., Yousefi, M. (2021). Application of Box–Behnken Design for Optimizing Parameters of Hexavalent Chromium Removal from Aqueous Solutions Using Fe3O4 Loaded on Activated Carbon Prepared from
Alga: Kinetics and Equilibrium Study.
Journal of Water Process Engineering, 42, 102113.
https://doi.org/10.1016/j.jwpe.2021.102113
[44] Nguyen, D. T. C., Vo, D. V. N., Nguyen, C. N. Q., Ai Pham, L. H., Le, H. T. N., Nguyen, T. T., & ran, T. V. (2021). Box–Behnken Design, Kinetic, and Isotherm Models for Oxytetracycline Adsorption onto Co-Based ZIF-67.
Applied Nanoscience, 11, 2347-2359.
https://doi.org/10.1007/s13204-021-01954-w
[45] Jiang, B., Zhang, B., Duan, X. & Xing, Y. (2024). CO
2 Capture by Modified Clinoptilolite and Its Regeneration Performance.
International Journal of Coal Science & Technology, 11, 20.
https://doi.org/10.1007/s40789-023-00661-x
[46] Sol-Sanchez, M., Moreno-Navarro, F., Rubio-Gámez, M. C., Pérez-Mena, V., & Cabanillas, P. (2019). Reuse of Zeolite By-Products Derived from Petroleum Refining for Sustainable Roads.
Advances in Materials Science and Engineering, 2019, 4256989.
https://doi.org/10.1155/2019/4256989
[47] Li, Z., Ren, J., Zhu, J., Li, W., Fu, Z., & Yang, L. (2020). Study on the Construction Performance of Zeolite Asphalt Mixture Based on Macro-Micro Scale.
Advances in Materials Science and Engineering, 2020, 4137321.
https://doi.org/10.1155/2020/4137321
[48] Qi, X., Tong, X., Pan, W., Zeng, Q., You, S., & Shen, J. (2021). Recent Advances in Polysaccharide-Based Adsorbents for Wastewater Treatment.
Journal of Cleaner Production, 315, 128221.
https://doi.org/10.1016/j.jclepro.2021.128221
[49] Sadeghalvad, B., Ahali, Z., & Azadmehr, A. (2016). Modification of Natural Zeolite by Carboxylate
Compounds and Minerals for Removal of Zinc Ions from Wastewater: Equilibrium and Kinetic Studies.
Arabian Journal for Science and Engineering, 41, 2501-2513.
https://doi.org/10.1007/s13369-015-2003-4
[50] Yang, X., Zhang, H., Cheng, S., & Zhou, B. (2022). Optimization of the Adsorption and Removal of Sb(III) by MIL-53(Fe)/GO Using Response Surface Methodology.
RSC Adv, 12, 4101-4112.
https://doi.org/10.1039/D1RA08169A
[51] Sadeghalvad, B., Khorshidi, N., Azadmehr, A., & Sillanpää, M. (2021). Sorption, Mechanism, and Behavior of Sulfate on Various Adsorbents: A Critical Review.
Chemosphere, 263, 128064.
https://doi.org/10.1016/j.chemosphere.2020.128064
[52] Tian, B., Song, Y., Wang, R., Wang, Y., Wang, T., Chu, J., Qiao, Z., Li, M., Lu, J., & Tong, Y. (2023). Adsorption of Sulfate Ions from Water by CaCl2-Modified Biochar Derived from Kelp.
RSC Sustainability, 1, 898-913.
https://doi.org/10.1039/D2SU00136E
[53] Pigna, M., & Violante, A. (2003). Adsorption of sulfate and phosphate on Andisols.
Communications in soil science and plant analysis,
34(15-16), 2099-2113.
https://doi.org/10.1081/CSS-120024051
[54] Ghosh, G. K., & Dash, N. R. (2012). Sulphate sorption-desorption characteristics of lateritic soils of West Bengal, India. International Journal of Plant, Animal and Environmental Sciences, 2(1), 167-176.
[55] Matusik, J. (2014). Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge.
Chemical Engineering Journal,
246, 244-253.
https://doi.org/10.1016/j.cej.2014.03.004
[56] Sadeghalvad, B., Azadmehr, A., & Hezarkhani, A. (2016). Assessment of iron ore mineral wastes for sulfate removal from groundwater wells: a case study.
RSC Advances,
6(14), 11719-11734.
https://doi.org/10.1039/C5RA21843H
[57] Runtti, H., Tynjälä, P., Tuomikoski, S., Kangas, T., Hu, T., Rämö, J., & Lassi, U. (2017). Utilisation of barium-modified analcime in sulphate removal: Isotherms, kinetics and thermodynamics studies.
Journal of Water Process Engineering,
16, 319-328.
https://doi.org/10.1016/j.jwpe.2016.11.004
[58] Ruiz-Serrano, D., . Flores-Acosta, M, Conde-Barajas, E., Ramírez-Rosales, D., Yáñez-Limón, J., & Ramírez-Bon, R. (2010). Study by XPS of Different Conditioning Processes to Improve the Cation Exchange in Clinoptilolite.
Journal of Molecular Structure, 980(1-3), 149-155.
https://doi.org/10.1016/j.molstruc.2010.07.007
[59] Pavia, D., Lampman, G., Kriz, G., & Vyvyan, J. (2015). Introduction to Spectroscopy, Cengage Learning, 5th ed.
[61] Chaudhary, J., Tailor, G., Yadav, M., & Mehta, C. (2023). Green Route Synthesis of Metallic Nanoparticles Using Various Herbal Extracts: A Review.
Biocatalysis and Agricultural Biotechnology, 50, 102692.
https://doi.org/10.1016/j.bcab.2023.102692