Enhanced sulfate removal from aqueous solution using ion-exchanged clinoptilolite: A study on adsorption efficiency and process optimization

Document Type : Research Article

Authors

Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, Iran

Abstract

Zeolites such as clinoptilolite, a class of microporous crystalline materials, have gained significant attention thanks to their exceptional adsorption capabilities. This study explored the modification of clinoptilolite through an ion exchange process to boost its sulfate removal efficiency, a simple and cost-effective method. To optimize the adsorption process, the study evaluated the impact of temperature, time, and solution concentration on sulfate removal performance using the Response surface methodology (RSM). The results indicated that the maximum adsorption efficiency (81.79 %) was achieved at a temperature of 60 °C, a contact time of 3 h, and a solution concentration of 0.6 M. Characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) were employed to analyze the structural changes and performance of the modified clinoptilolite. Overall, this study demonstrates the potential of modified clinoptilolite as an effective and sustainable adsorbent for sulfate removal, offering promising prospects for industrial water treatment applications.

Graphical Abstract

Enhanced sulfate removal from aqueous solution using ion-exchanged clinoptilolite: A study on adsorption efficiency and process optimization

Highlights

  • Clinoptilolite zeolite was prepared, and adsorption experiments were carried out for sulfate removal from water.
  • An efficient and economical process was introduced for ion exchange of clinoptilolite with high prospects for industrial applications.
  • Response surface methodology (RSM) was used to optimize the parameters of modification.
  • The modified clinoptilolite has an excellent removal effect on sulfate ions.

Keywords

Main Subjects


Copyright © 2024 The Author(s). Published by IROST.

[1] Khabazipour, M. & Anbia, M. (2021). Process Optimization and Adsorption Modeling Using Hierarchical Zif-8 Modified with Lanthanum and Copper for Sulfate Uptake from Aqueous Solution: Kinetic, Isotherm and Thermodynamic Studies. Journal of Inorganic and Organometallic Polymers and Materials, 31, 2401-2424. https://doi.org/10.1007/s10904-021-01878-6
[2] Krivovichev, V. (2010). Minerals as Advanced Materials I, Springer. https://doi.org/10.1007/978-3-540-77123-4.
[3] Salami, A., Bonakdari, H., Akhbari, A., Shamshiri, A., Mousavi, F., Farzin, S. Hassanvand, M. & Noori, A. (2020). Performance Assessment of Modified Clinoptilolite and Magneticn Nanotubes on sulfate Removal and Potential Application in Natural River Samples. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 97, 51-63. https://doi.org/10.1007/s10847-020-00982-3
[4] Ma, H., Zhang, J., Wang, M. & Sun, S. (2019). Modification of Y-Zeolite with Zirconium for Enhancing the Active Component Loading: Preparation and Sulfate Adsorption Performance of ZrO(OH)2/Y-Zeolite. ChemistrySelect,4(27), 7981-7990. https://doi.org/10.1002/slct.201901519
[5] Ma, H., Wang, M., Zhang, J. & Su, S. (2019). Preparation Mechanism of Spherical Amorphous ZrO(OH)2/AlOOH Hybrid Composite Beads for Adsorption Removal of Sulfate Radical from Water. Materials Letters, 247, 56-59. https://doi.org/10.1016/j.matlet.2019.03.033
[6] Benne, P., Neubert, L., Sperlich, A., & Ernst, M. (2023). Application of a Carbon Dioxide Regenerated Ion-Exchange Process for Removing Sulphate from Drinking Water: A Simple Approach to Estimate Process Performance. Environmental Science: Water Research & Technology, 9(3), 973-981. https://doi.org/10.1039/D2EW00655C
[7] Hernández, P., Recio, G., Canales, C., Schwarz, A, Villa-Gomez, D., Southam, G., & Nancucheo, I. (2022). Evaluation of Operating Conditions on Sulfate Reduction from Acidic Wastewater in a Fixed-Bed Bioreactor. Minerals Engineering, 177, 107370. https://doi.org/10.1016/j.mineng.2021.107370
[8] Rahmati, M., Yeganeh, G., & Esmaeli, H. (2019). Sulfate Ion Removal from Water Using Activated Carbon Powder Prepared by Ziziphus Spina-Christi Lotus Leaf. Acta Chimica Slovenica, 66(4), 888-898.
https://doi.org/10.17344/acsi.2019.5093
[9] Dehnamaki, S., & Zolgharnein, J. (2022). Sulfate Removal by Barium-Terephthalate MOF Synthesized
from Recycled PET-Waste Using Doehlert Design Optimization. Inorganic Chemistry Communications, 140, 109388. https://doi.org/10.1016/j.inoche.2022.109388
[10] Zhao, S., Long, Y., Su, Y., Wang, S. Zhang, Z., & Zhang, X. (2021). Cobalt-Enhanced Mass Transfer and Catalytic Production of Sulfate Radicals in MOF-Derived CeO2 •Co3O4 Nanoflowers for Efficient Degradation of Antibiotics, Small, 17(43), 2101393. https://doi.org/10.1002/smll.202101393
[11] Salehi, S., & Hosseinifard, M. (2020). Optimized Removal of Phosphate and Nitrate from Aqueous Media using Zirconium Functionalized Nanochitosan-Graphene Oxide Composite. Celloluse, 27, 8859-8883.
[12] Castillo, X., Pizarro, J., Ortiz, C., Cid, H., Florez, M.,De Canck, E., & Van Der Voort, P. (2018). A Cheap Mesoporous Silica from Fly Ash as an Outstanding Adsorbent for Sulfate in Water. Microporous and Mesoporous Materials, 272, 184-192. https://doi.org/10.1016/j.micromeso.2018.06.014
[13] Ao, H., Cao, W., Hong, Y., Wu, J., & Wei, L. (2020). Adsorption of Sulfate Ion from Water by Zirconium Oxide-Modified Biochar Derived from Pomelo Peel. Science of The Total Environment, 708, 135092. https://doi.org/10.1016/j.scitotenv.2019.135092
[14] Ighalo, J. O., Rangabhashiyam, S., Dulta, K., Umeh, C. T., Iwuozor, K. O., Aniagor, C. O., Eshiemogie, S. O., Iwuchukwu, F. U., & Igwegbe, C. A. (2022). Recent Advances in Hydrochar Application for the Adsorptive Removal of Wastewater Pollutants. Chemical Engineering Research and Design, 184, 419-456. https://doi.org/10.1016/j.cherd.2022.06.028
[15] Suresh Kumar, P., Korving, L., Keesman, K., van Loosdrecht, M. C. M., & Witkamp, G. (2019). Effect of Pore Size Distribution and Particle Size of Porous Metal Oxides on Phosphate Adsorption Capacity and Kinetics. Chemical Engineering Journal, 358, 160-169. https://doi.org/10.1016/j.cej.2018.09.202
[16] Khalid, W., Kui Cheng, C., Lu, P., Tang, J., Liu, X., Ali, A., Shahab, A., & Wang, X. (2022). Fabrication and Characterization of a Novel Ba2+-Loaded Sawdust Biochar Doped with Iron Oxide for the Super-Adsorption of SO42- from Wastewater. Chemosphere, 303(Part 3), 135233. https://doi.org/10.1016/j.chemosphere.2022.135233
[17] Choi, J., Hong, S.-W., Kimb, D.-J., & Lee, S.-H. (2012). Investigation of Phosphate Removal Using Sulphate-Coated Zeolite for Ion Exchange. Environmental Technology, 33(20), 2329-2335. https://doi.org/10.1080/09593330.2012.666569
[18] Salimi, A., Shamshiri, A., Jaberi, E., Bonakdari, H., Akhbari, A., Delatolla, R., Hassanvand, M. R., Agharazi, M., Huang, Y. F., Ahmed, A. N., Elshafie, A. (2022). Total Iron Removal from Aqueous Solution by Using Modified Clinoptilolite. Ain Shams Engineering Journal, 13(1), 101495. https://doi.org/10.1016/j.asej.2021.05.009
[19] Wang, S., & Peng, Y. (2010). Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chemical Engineering Journal, 156(1), 11-24. https://doi.org/10.1016/j.cej.2009.10.029
[20] Mercurio, M., Sarkar, B., & Langella, A. (2019). Modified Clay and Zeolite Nanocomposite Materials, Environmental and Pharmaceutical Applications, Elsevier. https://doi.org/10.1016/C2017-0-01250-8
[21] Król, M.(2020). Natural vs. Synthetic Zeolites. Crystals, 10(7), 622. https://doi.org/10.3390/cryst10070622
[22] Zhao, Q., Long, C., Jiang, Z., Yin, W., Tang, A., & Yang, H. (2023). Highly Stable Natural Zeolite/Montmorillonite Hybrid Microspheres with Green Preparation Process for Efficient Adsorption of Ammonia Nitrogen in Wastewater. Applied Clay Science, 243, 106787. https://doi.org/10.1016/j.clay.2022.106787
[23] Virpiranta, H., Hermanni Sotaniemi, V., Leiviskä, T., Taskila, S., Rämö, J., Barrie Johnson, D., & Tanskanen, J. (2022). Continuous Removal of Sulfate and Metals from Acidic Mining-Impacted Waters at Low Temperature Using a Sulfate-Reducing Bacterial Consortium. Chemical Engineering Journal, 427, 132050. https://doi.org/10.1016/j.cej.2021.132050
[24] Zhu, M., Tan, Z., Ji, X., & He, Z. (2022). Removal of Sulfate and Chloride Ions from Reverse Osmosis Concentrate Using a Two-Stage Ultra-High Lime with Aluminum Process. Journal of Water Process Engineering, 49, 103033. https://doi.org/10.1016/j.jwpe.2022.103033
[25] Li, H., Chai, L., Cui, J., Zhang, F., Wang, F., & Li, S. (2022). Polypyrrole-Modified Mushroom Residue Activated Carbon for Sulfate and Nitrate Removal from Water: Adsorption Performance and Mechanism. Journal of Water Process Engineering, 49, 102916. https://doi.org/10.1016/j.jwpe.2022.102916
[26] Guerrero-Flores, A. D., Elizondo Alvarez, M. A., Flores Alvarez, J. M., & Uribe-Salas, A. (2022). Comparative Ions from Flotation Recycling Water by Aluminum Hydroxide. Transactions of Nonferraous Metals Society of China, 32(7), 2379-2390. https://doi.org/10.1016/S1003-6326(22)65954-5
[27] Moreroa-Monyelo, M., Falayi, T., Ntuli, F., & Magwa, N. (2022). Studies Towards the Adsorption of Sulphate Ions from Acid Mine Drainage by Modified Attapulgite Clays. South African Journal of Chemical Engineering, 42, 241-254. https://doi.org/10.1016/j.sajce.2022.08.011
[28] Voutetaki, A., Plakas, K. V., Papadopoulos, A. I., Bollas, D., Parcharidis, S., & Seferlis, P. (2023). PilotScale Separation of Lead and Sulfate Ions from Aqueous Solutions Using Electrodialysis: Application and Parameter Optimization for the Battery Industry. Journal of Cleaner Production, 410, 137200. https://doi.org/10.1016/j.jclepro.2023.137200
[29] Chatla, A., Almanassra, I. W., Abushawish, A., Laoui, T., Alawadhi, H., Atieh, M. A., & Ghaffour, N. (2023). Sulphate Removal from Aqueous Solutions: State-ofthe-Art Technologies and Future Research Trends. Desalination, 558, 116615. https://doi.org/10.1016/j.desal.2023.116615
[30] Zhou, X., Fernández-Palacios, E., Dorado, A. D., Lafuente, J., Gamisans, X. & Gabriel, D. (2024). The Effect of Slime Accumulated in a Long-Term Operating UASB Using Crude Glycerol to Treat S-Rich Wastewater. Journal of Environmental Sciences, 135, 353-366. https://doi.org/10.1016/j.jes.2022.11.011
[31] Pratinthong, N., Sangchan, S., Chimupala, Y., & Kijjanapanich, P. (2021). Sulfate Removal from Lignite Coal Mine Drainage in Thailand Using Ettringite Precipitation. Chemosphere, 285, 131357. https://doi.org/10.1016/j.chemosphere.2021.131357
[32] Qin, C., Yao, D., Cheng, C., Xie, H., Hu, Z., & Zhang, J. (2022). Influence of Iron Species on the Simultaneous Nitrate and Sulfate Removal in Constructed Wetlands Under Low/High COD Concentrations. Environmental Research, 212(Part C), 113453. https://doi.org/10.1016/j.envres.2022.113453
[33] Kennedy, D. A., Mujčin, M., Abou-Zied, C., & Tezel, F. H. (2019). Cation Exchange Modification of Clinoptilolite –Thermodynamic Effects on Adsorption Separations of Carbon Dioxide, Methane, and Nitrogen. Microporous and Mesoporous Materials, 274, 327-341. https://doi.org/10.1016/j.micromeso.2018.08.035
[34] Kennedy, D. A., & Tezel, F. H. (2018). Cation Exchange Modification of Clinoptilolite - Screening Analysis for Potential Equilibrium and Kinetic Adsorption Separations Involving Methane, Nitrogen, and Carbon Dioxide. Microporous and Mesoporous Materials, 262, 235-250. https://doi.org/10.1016/j.micromeso.2017.11.054
[35] Price, L. A., Jones, Z., Nearchou, A., Stenning, G., Nye, D., & Sartbaeva, A. (2022). The Effect of Cation Exchange on the Pore Geometry of Zeolite L. AppliedChem, 2(3), 149-159. https://doi.org/10.3390/appliedchem2030011
[36] Campanile, A., Liguori, B., Ferone, C., Caputo, D. & Aprea, P. (2022). Zeolite-Based Monoliths for Water Softening by Ion Exchange/Precipitation Process. Scientific Reports, 12, 3686. https://doi.org/10.1038/s41598-022-07679-2
[37] Łach, M., Grela, A., Pławecka, K., Duarte Guigou, M., Mikuła, J., Komar, N., Bajda, T., & Korniejenko, K. (2022). Surface Modification of Synthetic Zeolites with
Ca and HDTMA Compounds with Determination of Their Phytoavailability and Comparison of CEC and AEC Parameters. Materials, 15(12), 4083. https://doi.org/10.3390/ma15124083
[38] Antony, J. (2014). Design of Experiments for Engineers and Scientists, Elsevier. https://doi.org/10.1016/C2012-0-03558-2
[39] Shojaei, S., & Pirkamali, M. (2019). Application of Box–Behnken Design Approach for Removal of Acid Black 26 from Aqueous Solution Using Zeolite: Modeling, Optimization, and Study of Interactive Variables. Water Conservation Science and Engineering, 4, 13-19. https://doi.org/10.1007/s41101-019-00064-7
[40] Oyinade, A., SanniKovo, A., & Hill, P. (2016). Synthesis, Characterization and Ion Exchange Isotherm of Zeolite Y Using Box–Behnken Design. Advanced Powder Technology, 27(2), 750-755. https://doi.org/10.1016/j.apt.2016.03.002
[41] Mehdi, B., Belkacemi, H., Brahmi-Ingrachen, D., AitBraham, L., & Muhr, L. (2022). Study of Nickel
Adsorption on Nacl-Modified Natural Zeolite Using Response Surface Methodology and Kinetics Modeling. Groundwater for Sustainable Development, 17, 100757. https://doi.org/10.1016/j.gsd.2022.100757
[42] Li, M., Feng, C., Zhang, Z., Chen, R., Xue, Q., Gao, C., & Sugiura, N. (2010). Optimization of Process Parameters for Electrochemical Nitrate Removal Using Box–Behnken Design. Electrochimica Acta, 56(1), 265-270. https://doi.org/10.1016/j.electacta.2010.08.085
[43] Afshin, S., Rashtbari, Y., Vosough, M., Dargahi, A., Fazlzadeh, M., Behzad, A., Yousefi, M. (2021). Application of Box–Behnken Design for Optimizing Parameters of Hexavalent Chromium Removal from Aqueous Solutions Using Fe3O4 Loaded on Activated Carbon Prepared from
Alga: Kinetics and Equilibrium Study. Journal of Water Process Engineering, 42, 102113. https://doi.org/10.1016/j.jwpe.2021.102113
[44] Nguyen, D. T. C., Vo, D. V. N., Nguyen, C. N. Q., Ai Pham, L. H., Le, H. T. N., Nguyen, T. T., & ran, T. V. (2021). Box–Behnken Design, Kinetic, and Isotherm Models for Oxytetracycline Adsorption onto Co-Based ZIF-67. Applied Nanoscience, 11, 2347-2359. https://doi.org/10.1007/s13204-021-01954-w
[45] Jiang, B., Zhang, B., Duan, X. & Xing, Y. (2024). CO2 Capture by Modified Clinoptilolite and Its Regeneration Performance. International Journal of Coal Science & Technology, 11, 20. https://doi.org/10.1007/s40789-023-00661-x
[46] Sol-Sanchez, M., Moreno-Navarro, F., Rubio-Gámez, M. C., Pérez-Mena, V., & Cabanillas, P. (2019). Reuse of Zeolite By-Products Derived from Petroleum Refining for Sustainable Roads. Advances in Materials Science and Engineering, 2019, 4256989. https://doi.org/10.1155/2019/4256989
[47] Li, Z., Ren, J., Zhu, J., Li, W., Fu, Z., & Yang, L. (2020). Study on the Construction Performance of Zeolite Asphalt Mixture Based on Macro-Micro Scale. Advances in Materials Science and Engineering, 2020, 4137321. https://doi.org/10.1155/2020/4137321
[48] Qi, X., Tong, X., Pan, W., Zeng, Q., You, S., & Shen, J. (2021). Recent Advances in Polysaccharide-Based Adsorbents for Wastewater Treatment. Journal of Cleaner Production, 315, 128221. https://doi.org/10.1016/j.jclepro.2021.128221
[49] Sadeghalvad, B., Ahali, Z., & Azadmehr, A. (2016). Modification of Natural Zeolite by Carboxylate
Compounds and Minerals for Removal of Zinc Ions from Wastewater: Equilibrium and Kinetic Studies. Arabian Journal for Science and Engineering, 41, 2501-2513. https://doi.org/10.1007/s13369-015-2003-4
[50] Yang, X., Zhang, H., Cheng, S., & Zhou, B. (2022). Optimization of the Adsorption and Removal of Sb(III) by MIL-53(Fe)/GO Using Response Surface Methodology. RSC Adv, 12, 4101-4112. https://doi.org/10.1039/D1RA08169A
[51] Sadeghalvad, B., Khorshidi, N., Azadmehr, A., & Sillanpää, M. (2021). Sorption, Mechanism, and Behavior of Sulfate on Various Adsorbents: A Critical Review. Chemosphere, 263, 128064. https://doi.org/10.1016/j.chemosphere.2020.128064
[52] Tian, B., Song, Y., Wang, R., Wang, Y., Wang, T., Chu, J., Qiao, Z., Li, M., Lu, J., & Tong, Y. (2023). Adsorption of Sulfate Ions from Water by CaCl2-Modified Biochar Derived from Kelp. RSC Sustainability, 1, 898-913. https://doi.org/10.1039/D2SU00136E
[53] Pigna, M., & Violante, A. (2003). Adsorption of sulfate and phosphate on Andisols. Communications in soil science and plant analysis, 34(15-16), 2099-2113. https://doi.org/10.1081/CSS-120024051
[54] Ghosh, G. K., & Dash, N. R. (2012). Sulphate sorption-desorption characteristics of lateritic soils of West Bengal, India. International Journal of Plant, Animal and Environmental Sciences, 2(1), 167-176.
[55] Matusik, J. (2014). Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244-253. https://doi.org/10.1016/j.cej.2014.03.004
[56] Sadeghalvad, B., Azadmehr, A., & Hezarkhani, A. (2016). Assessment of iron ore mineral wastes for sulfate removal from groundwater wells: a case study. RSC Advances, 6(14), 11719-11734. https://doi.org/10.1039/C5RA21843H
[57] Runtti, H., Tynjälä, P., Tuomikoski, S., Kangas, T., Hu, T., Rämö, J., & Lassi, U. (2017). Utilisation of barium-modified analcime in sulphate removal: Isotherms, kinetics and thermodynamics studies. Journal of Water Process Engineering, 16, 319-328. https://doi.org/10.1016/j.jwpe.2016.11.004
[58] Ruiz-Serrano, D., . Flores-Acosta, M, Conde-Barajas, E., Ramírez-Rosales, D., Yáñez-Limón, J., & Ramírez-Bon, R. (2010). Study by XPS of Different Conditioning Processes to Improve the Cation Exchange in Clinoptilolite. Journal of Molecular Structure, 980(1-3), 149-155. https://doi.org/10.1016/j.molstruc.2010.07.007
[59] Pavia, D., Lampman, G., Kriz, G., & Vyvyan, J. (2015). Introduction to Spectroscopy, Cengage Learning, 5th ed.
[60] Gauglitz, G., & Moore, D. S. (2014). Handbook of Spectroscopy, 2nd, Enlarged Edition, Wiley-VCH Verlag GmbH & Co. https://doi.org/10.1002/9783527654703
[61] Chaudhary, J., Tailor, G., Yadav, M., & Mehta, C. (2023). Green Route Synthesis of Metallic Nanoparticles Using Various Herbal Extracts: A Review. Biocatalysis and Agricultural Biotechnology, 50, 102692. https://doi.org/10.1016/j.bcab.2023.102692