[1] Abounahia, N. M., El-Sayed, A. M. A., Saleem, H., & Zaidi, S. J. (2023). An Overview on the Progress in Produced Water Desalination by Membrane-Based Technology.
Journal of Water Process Engineering,
51, 103479.
https://doi.org/10.1016/j.jwpe.2022.103479
[2] Zhang, X., Koirala, R., Pramanik, B., Fan, L., Date, A., & Jegatheesan, V. (2023). Challenges and Advancements in Membrane Distillation Crystallization for Industrial Applications.
Environmental Research,
234, 116577.
https://doi.org/10.1016/j.envres.2023.116577
[3] Korak, J. A., Mungan, A. L., & Watts, L. T. (2023). Critical Review of Waste Brine Management Strategies for Drinking Water Treatment Using Strong Base Ion Exchange.
Journal of Hazardous Materials,
441, 129473.
https://doi.org/10.1016/j.jhazmat.2022.129473
[5] Abid, M. B., Wahab, R. A., Salam, M. A., Moujdin, I. A., & Gzara, L. (2023). Desalination Technologies, Membrane Distillation, and Electrospinning, An Overview.
Heliyon,
9(2), e12801.
https://doi.org/10.1016/j.heliyon.2023.e12810
[6] Pathak, N., Shon, H., Yu, H., Choo, Y., Naidu, G., Akther, N., & Han, D. S. (2023). Membrane Technology for Brine Management and Valuable Resource Recovery. In L. F. Dumée, M. Sadrzadeh & M. M. A. Shirazi (Eds.),
Green Membrane Technologies towards Environmental Sustainability(pp. 415-441). Elsevier.
https://doi.org/10.1016/B978-0-323-95165-4.00014-8
[7] Zhao, Z., Muylaert, K., & Vankelecom, I. F. (2023). Applying Membrane Technology in Microalgae Industry: A Comprehensive Review.
Renewable and Sustainable Energy Reviews,
172, 113041.
https://doi.org/10.1016/j.rser.2022.113041
[8] Fontana, D., Forte, F., Pietrantonio, M., Pucciarmati, S., & Marcoaldi, C. (2023). Magnesium Recovery from Seawater Desalination Brines: A Technical Review.
Environment, Development and Sustainability,
25, 13733-13754.
https://doi.org/10.1007/s10668-022-02663-2
[9] Ibraheem, B. M., Aani, S. A., Alsarayreh, A. A., Alsalhy, Q. F., & Salih, I. K. (2023). Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential.
Membranes,
13(4), 379.
https://doi.org/10.3390/membranes13040379
[10] Abounahia, N., Ibrar, I., Kazwini, T., Altaee, A., Samal, A. K., Zaidi, S. J., & Hawari, A. H. (2023). Desalination by the Forward Osmosis: Advancement and Challenges.
Science of The Total Environment,
886, 163901.
https://doi.org/10.1016/j.scitotenv.2023.163901
[11] Tai, Z. S., Othman, M. H. D., Koo, K. N., & Jaafar, J. (2023). Critical Review on Membrane Designs for Enhanced Flux Performance in Membrane Distillation.
Desalination,
553, 116484.
https://doi.org/10.1016/j.desal.2023.116484
[12] Chang, H., Liu, B., Zhang, Z., Pawar, R., Yan, Z., Crittenden, J. C., & Vidic, R. D. (2020). A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions.
Environmental Science & Technology,
55(3), 1395-1418.
https://doi.org/10.1021/acs.est.0c05454
[13] Kebria, M. R. S., & Rahimpour, A. (2020). Membrane Distillation: Basics, Advances, and Applications.
Advances in membrane technologies. In A. Abdelrasoul (Ed.), IntechOpen.
https://doi.org/10.5772/intechopen.86952
[14] Ravi, J., Othman, M. H. D., Matsuura, T., Bilad, M. R. I., El-Badawy, T. H., & Aziz, F.,
et al. (2020). Polymeric Membranes for Desalination Using Membrane Distillation: A Review.
Desalination,
490, 114530.
https://doi.org/10.1016/j.desal.2020.114530
[15] Erdugan, B. M., Demirel, E., & Suvaci, E. (2022). Preparation and Characterization of Polyvinyl Chloride Membranes Decorated with Designed Novel Zinc Oxide Particles for Mitigating Uncontrollable Agglomeration.
Journal of Environmental Chemical Engineering,
10(5), 108388.
https://doi.org/10.1016/j.jece.2022.108388
[16] Mousa, S. A., Abdallah, H., & Khairy, S. A. (2023). Low-Cost Photocatalytic Membrane Modified with Green Heterojunction TiO
2/ZnO Nanoparticles Prepared from Waste.
Scientific Reports,
13(1), 22150.
https://doi.org/10.1038/s41598-023-49516-0
[17] Erdugan, B. M., Dadashov, S., Demirel, E., & Suvaci, E. (2021). Effect of Polymer Type on the Characteristics of ZnO Embedded Nanocomposite Membranes.
Desalination and Water Treatment,
213, 159-176.
https://doi.org/10.5004/dwt.2021.26714
[18] Cai, W., Chen, H., Lin, J., Liu, Y., Wu, F., & Pu, X. (2023). Inorganic Nanoparticles-Modified Polyvinyl Chloride Separation Membrane and Enhanced Anti-Fouling Performance.
Surfaces and Interfaces,
38, 102885.
https://doi.org/10.1016/j.surfin.2023.102885
[19] Ali, H., Al-Kadhemy, M. F. H., & Saeed, A. A. (2022). Physical Properties and Transmitted Sunlight of Polyvinyl Chloride/ZnO Nanocomposites Films.
Journal of Kufa-Physics,
14(02), 16-28.
https://doi.org/10.31257/2018/JKP/2022/140203
[20] Xu, Y., Yang, Y., Sun, M., Fan, X., Song, C., Tao, P., & Shao, M. (2021). High‐Performance Desalination of High‐Salinity Reverse Osmosis Brine by Direct Contact Membrane Distillation Using Superhydrophobic Membranes.
Journal of Applied Polymer Science,
138(5), 49768.
https://doi.org/10.1002/app.49768