Fabrication and optimization of superhydrophobic ZnO-SA/PVC/PVP nanocomposite membrane distillation for highly saline RO brine recovery

Document Type : Research Article

Authors

1 Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Innovation Center for Membrane Technology (ICMT), University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran

Abstract

The induced phase separation method was used to fabricate polyvinyl chloride (PVC) flat sheets for membrane distillation (MD) of RO brine feed by using dimethylformamide (DMF) and water as solvent and nonsolvent, respectively. Polyvinylpyrrolidone (PVP) and zinc oxide (ZnO) nanoparticles were utilized to improve the membrane structure and modify pore surfaces. The Taguchi experimental design approach was employed to investigate the impacts of concentrations of PVP and ZnO nanoparticles on the membrane's structural characteristics and performance. SEM, XRD, and FT-IR were used to characterize the surface and cross-sectional morphology, as well as the presence of crystalline phases and cross-linked organic groups, respectively. The water contact angle was measured to determine the wettability of the surface membrane and the impact of ZnO nanoparticles on its hydrophobicity. The membrane synthesis and MD process parameters were optimized for a Persian Gulf feed brine to obtain a maximum contact angle of 148°, under 80 °C and 12 L.min-1 circulating feed water, and resulted in high salt rejection (96.4%) and proper permeability water flux (4.2 L.m-2h-1).

Graphical Abstract

Fabrication and optimization of superhydrophobic ZnO-SA/PVC/PVP nanocomposite membrane distillation for highly saline RO brine recovery

Highlights

  • ZnO-SA nanoparticles were used to modify PVC/PVP composite membranes.
  • Taguchi method was used to determine the optimal conditions for preparing PVC/PVP membranes.
  • The super-hydrophobicity of one membrane was optimized.

Keywords

Main Subjects


[1] Abounahia, N. M., El-Sayed, A. M. A., Saleem, H., & Zaidi, S. J. (2023). An Overview on the Progress in Produced Water Desalination by Membrane-Based Technology. Journal of Water Process Engineering51, 103479. https://doi.org/10.1016/j.jwpe.2022.103479
[2] Zhang, X., Koirala, R., Pramanik, B., Fan, L., Date, A., & Jegatheesan, V. (2023). Challenges and Advancements in Membrane Distillation Crystallization for Industrial Applications. Environmental Research, 234, 116577. https://doi.org/10.1016/j.envres.2023.116577
[3] Korak, J. A., Mungan, A. L., & Watts, L. T. (2023). Critical Review of Waste Brine Management Strategies for Drinking Water Treatment Using Strong Base Ion Exchange. Journal of Hazardous Materials441, 129473. https://doi.org/10.1016/j.jhazmat.2022.129473
[4] Tu, W. H., Zhao, Y., Chan, W. P., & Lisak, G. (2023). Reclaimed Seawater Discharge-Desalination Brine Treatment and Resource Recovery System. Water Research, 251, 121096. https://doi.org/10.1016/j.watres.2023.121096
[5] Abid, M. B., Wahab, R. A., Salam, M. A., Moujdin, I. A., & Gzara, L. (2023). Desalination Technologies, Membrane Distillation, and Electrospinning, An Overview. Heliyon9(2), e12801. https://doi.org/10.1016/j.heliyon.2023.e12810
[6] Pathak, N., Shon, H., Yu, H., Choo, Y., Naidu, G., Akther, N., & Han, D. S. (2023). Membrane Technology for Brine Management and Valuable Resource Recovery. In L. F. Dumée, M. Sadrzadeh & M. M. A. Shirazi (Eds.), Green Membrane Technologies towards Environmental Sustainability(pp. 415-441). Elsevier. https://doi.org/10.1016/B978-0-323-95165-4.00014-8
[7] Zhao, Z., Muylaert, K., & Vankelecom, I. F. (2023). Applying Membrane Technology in Microalgae Industry: A Comprehensive Review. Renewable and Sustainable Energy Reviews172, 113041. https://doi.org/10.1016/j.rser.2022.113041
[8] Fontana, D., Forte, F., Pietrantonio, M., Pucciarmati, S., & Marcoaldi, C. (2023). Magnesium Recovery from Seawater Desalination Brines: A Technical Review. Environment, Development and Sustainability25, 13733-13754. https://doi.org/10.1007/s10668-022-02663-2
[9] Ibraheem, B. M., Aani, S. A., Alsarayreh, A. A., Alsalhy, Q. F., & Salih, I. K. (2023). Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. Membranes13(4), 379. https://doi.org/10.3390/membranes13040379
[10] Abounahia, N., Ibrar, I., Kazwini, T., Altaee, A., Samal, A. K., Zaidi, S. J., & Hawari, A. H. (2023). Desalination by the Forward Osmosis: Advancement and Challenges. Science of The Total Environment, 886, 163901. https://doi.org/10.1016/j.scitotenv.2023.163901
[11] Tai, Z. S., Othman, M. H. D., Koo, K. N., & Jaafar, J. (2023). Critical Review on Membrane Designs for Enhanced Flux Performance in Membrane Distillation. Desalination553, 116484. https://doi.org/10.1016/j.desal.2023.116484
[12] Chang, H., Liu, B., Zhang, Z., Pawar, R., Yan, Z., Crittenden, J. C., & Vidic, R. D. (2020). A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. Environmental Science & Technology55(3), 1395-1418. https://doi.org/10.1021/acs.est.0c05454
[13] Kebria, M. R. S., & Rahimpour, A. (2020). Membrane Distillation: Basics, Advances, and Applications. Advances in membrane technologies. In A. Abdelrasoul (Ed.), IntechOpen. https://doi.org/10.5772/intechopen.86952
[14] Ravi, J., Othman, M. H. D., Matsuura, T., Bilad, M. R. I., El-Badawy, T. H., & Aziz, F., et al. (2020). Polymeric Membranes for Desalination Using Membrane Distillation: A Review. Desalination490, 114530. https://doi.org/10.1016/j.desal.2020.114530
[15] Erdugan, B. M., Demirel, E., & Suvaci, E. (2022). Preparation and Characterization of Polyvinyl Chloride Membranes Decorated with Designed Novel Zinc Oxide Particles for Mitigating Uncontrollable Agglomeration. Journal of Environmental Chemical Engineering10(5), 108388. https://doi.org/10.1016/j.jece.2022.108388
[16] Mousa, S. A., Abdallah, H., & Khairy, S. A. (2023). Low-Cost Photocatalytic Membrane Modified with Green Heterojunction TiO2/ZnO Nanoparticles Prepared from Waste. Scientific Reports13(1), 22150. https://doi.org/10.1038/s41598-023-49516-0
[17] Erdugan, B. M., Dadashov, S., Demirel, E., & Suvaci, E. (2021). Effect of Polymer Type on the Characteristics of ZnO Embedded Nanocomposite Membranes. Desalination and Water Treatment213, 159-176. https://doi.org/10.5004/dwt.2021.26714
[18] Cai, W., Chen, H., Lin, J., Liu, Y., Wu, F., & Pu, X. (2023). Inorganic Nanoparticles-Modified Polyvinyl Chloride Separation Membrane and Enhanced Anti-Fouling Performance. Surfaces and Interfaces38, 102885. https://doi.org/10.1016/j.surfin.2023.102885
[19] Ali, H., Al-Kadhemy, M. F. H., & Saeed, A. A. (2022). Physical Properties and Transmitted Sunlight of Polyvinyl Chloride/ZnO Nanocomposites Films. Journal of Kufa-Physics14(02), 16-28. https://doi.org/10.31257/2018/JKP/2022/140203
[20] Xu, Y., Yang, Y., Sun, M., Fan, X., Song, C., Tao, P., & Shao, M. (2021). High‐Performance Desalination of High‐Salinity Reverse Osmosis Brine by Direct Contact Membrane Distillation Using Superhydrophobic Membranes. Journal of Applied Polymer Science138(5), 49768. https://doi.org/10.1002/app.49768