Approximation and analytical study of the relativistic confined two particles state within the complex potential in the isotropic medium

Document Type : Research Article

Authors

1 Department of Physics, Ilam University, Ilam, Iran

2 Department of Physics and Engineering Sciences, Buein Zahra Technical University, Qazvin, Iran

Abstract

We have studied the dissociation of particle-antiparticle confined systems through a complex potential, which comes from adjusting and correcting both the perturbative and nonperturbative terms at finite temperatures. The real component of the confining nonperturbative potential makes the bound state stronger; in contrast, the absolute value of the imaginary component contributes more significantly to the thermal width at higher temperatures. The results are presented using the relativistic Bethe-Salpeter equation for the real and imaginary parts of the given potential within the framework of the asymptotic pattern and characteristics of the real and imaginary-time Green’s functions of the bound state as charged particles that couple to a gauge field in any external field. The relativistic behavior of interaction within the Sturmian representation for two intertwined spaces was extracted based on the mathematical quantum field theory technique in the perturbative calculation of the quantum field theory. The expectation value of the vacuum of field operators is defined as a sum of operator product expansion methods. The results are applied to predict the masses of the charmonium confined state and study the heat dynamics and attributes of the system. The expectation values agree with the experimental and theoretical data found within scholarly works and among academic researchers.

Graphical Abstract

Approximation and analytical study of the relativistic confined two particles state within the complex potential in the isotropic medium

Highlights

  • The dissociation of particle-antiparticle confined systems through a complex potential.
  • The real component of the confining nonperturbative and relativistic parts of potential.
  • Prediction the masses of the charmonium confined state and study the heat dynamics and attributes of the system.

Keywords

Main Subjects


Copyright © 2023 The Author(s). Published by IROST.

[1] Zhao, J., & Chen, B. (2023). Charmonium Transport in the High-μ B Medium. Physical Review C, 107(4), https://doi.org/10.1103/PhysRevC.107.044909
[2] Vogt, R., (2007). Ultrarelativistic Heavy-Ion Collisions (1st). Elsevier.
[3] Libbi, F., Rizzo, J., Tacchino, F., Marzari, N., & Tavernelli, I. (2022). Effective Calculation of the Green's Function in the Time Domain on Near-Term Quantum Processor. Physical Review Research, 4(4), 043038. https://doi.org/1103/PhysRevResearch.4.043038
[4] Meißner, U. G., & Rusetsky, A. (2022). Effective Field Theories. Cambridge University Press.
[5] Khalek, R. A., Bertone, V., Khoudli, A., & Nocera, E. R. (2022). Pion and Kaon Fragmentation Functions at Next-to-Next-to-Leading Order. Physics Letters B, 834, 137456. https://doi.org/10.1016/j.physletb.2022.137456
[6] Guo, F. -K., Hidalgo-Duque, C., Nieves, J., & Valderrama, M. P. (2013). Consequences of Heavy-Quark Symmetries for Hadronic Molecules. Physical Review D, 88(5), 054007. https://doi.org/10.1103/PhysRevD.88.054007
[7] Brambilla, N. (2022). Quark Nuclear Physics with Heavy Quarks. arXiv:2204.11295. https://doi.org/10.48550/arXiv.2204.11295
[8] Mustafa, M. G. (2023). An Introduction to Thermal Field Theory And Some of Its Application. The European Physical Journal Special Topics, 232, 1369-1457. https://doi.org/10.1140/epjs/s11734-023-00868-8
[9] Efimov, G. V. (2008). Gaussian Equivalent Representation of Path Integrals Over A Gaussian Measure. Path Integrals - New Trends and Perspectives. 138-145. https://doi.org/1142/9789812837271_0019
[10] Beraudo, A., Blaizot, J., & Ratti, C. (2008). Real And Imaginary-Time QQ Correlators in A Thermal Medium. Nuclear Physics A, 806(1-4), 312-338. https://doi.org/10.1016/j.nuclphysa.2008.03.001
[11] Feynman, R. P., Hibbs, A. R., & Styer, D. F. (2010). Quantum Mechanics And Path Integrals. Courier Corporation.
[12] Kamenev, A. (2023). Field Theory of Non-Equilibrium Systems. Cambridge University Press.
[13] Matsui, T. & Satz, H. (1986). J/ψ Suppression by Quark-Gluon Plasma Formation. Physics Letters B, 178(4), 416-422. https://doi.org/10.1016/0370-2693(86)91404-8
[14] Al-Masaeed, M., Rabei, E.M., & Al-Jamel, A. (2022). WKB Approximation with Conformable Operator. Modern Physics Letters A, 37(22), 2250144. https://doi.org/10.1142/S0217732322501449
[15] Dalabeeh, M., & Sandouqa, A. (2022). Energy Spectra of the Siked Harmonic Oscillator Using the Shifted 1/N The European Physical Journal Plus, 137(3), 327. https://doi.org/10.1140/epjp/s13360-022-02528-7
[16] Martín-Caro, A. G. (2022). Constrained Instanton Approximation of Skyrmions with Massive Pions. Physics Letters B, 835, 137532. https://doi.org/10.1016/j.physletb.2022.137532
[17] Ding, M., & Xing, X. (2022). Time-Slicing Path-Integral in Curved Space. Quantum, 6, 694-713. https://doi.org/10.22331/q-2022-04-21-694
[18] Efimov, G. V. (1999). Bound States in Quantum Field Theory, Scalar Fields. arXiv:hep-ph/9907483. https://doi.org/10.48550/arXiv.hep-ph/9907483
[19] Peskin, M. E., & Schroeder, D. V. (2019). An Introduction to Quantum Field Theory (1st). CRC Press.
[20] Dineykhan, M., Efimov, G. V., & Namsrai, Kh. (1991). Investigation of Green Functions And the Parisi‐Wu Quantization Method in Background Stochastic Fields. Fortschritte der Physik/Progress of Physics, 39(4), 259-318. https://doi.org/10.1002/prop.2190390402
[21] Thakur, L., Kakade, U., & Patra, B.K. (2014). Dissociation of Quarkonium in A Complex Potential. Physical Review D, 89(9), 094020. https://doi.org/10.1103/PhysRevD.89.094020
[22] Eides, M. I., Grotch, H., & Shelyuto, V. A. (2001). Theory of Light Hydrogenlike Atoms. Physics Reports, 342(2-3), 63-261. https://doi.org/10.1016/S0370-1573(00)00077-6
[23] Godfrey, S. & Isgur, N. (1985). Mesons in A Relativized Quark Model with Chromodynamics. Physical Review D, 32(1), 189-231. https://doi.org/10.1103/PhysRevD.32.189
[24] Dong, S. H. (2011). Wave Equations in Higher Dimensions. Springer Science & Business Media.
[25] Yukawa, H. (1935). On the Interaction of Elementary Particles. I. Proceedings of the Physico-Mathematical Society of Japan, 17, 48-57. https://doi.org/10.1143/PTPS.1.1
[26] Dineykhan, M., Efimov, G., Ganbold, G. D., & Nedelko, S. (2008). Oscillator Representation in Quantum Physics. Vol. 26, Springer Science & Business Media.
[27] Particle Data Group (1992). Review of Particle Properties. Physical Review D, 45(11), S1-S574. https://doi.org/10.1103/PhysRevD.45.S1
[28] Abu-Shady, M. (2017). N-Dimensional Schrödinger Equation at Finite Temperature Using the Nikiforov–Uvarov Method. Journal of the Egyptian Mathematical Society, 25(1), 86-89. https://doi.org/10.1016/j.joems.2016.06.006
[29] Inyang, E. P., Inyang, E. P., Akpan, I. O., Ntibi, J. E., & William, E. S. (2020). Analytical Solutions of the Schrödinger Equation with Class of Yukawa Potential for A Quarkonium System Via Series Expansion Method. European Journal of Applied Physics, 2(6), 1-6. https://doi.org/10.24018/ejphysics.2020.2.6.26