[1] Kefayati. GH. R. (2016). Simulation of Double Diffusive Natural Convection and Entropy Generation of Power-Law Fluids in An Inclined Porous Cavity with Soret and Dufour Effects (Part II: Entropy Generation).
International Journal of Heat and Mass Transfer, 94, 582-624.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.043
[4] Nalwa H. S. (2004). Encyclopedia of Nanoscience and Nanotechnology, Vol. 6, pp. 757-759.
[5] Maxwell J. C. (1873). Electricity and Magnetism, Clarendon Press, Oxford.
[6] Maxwell J. C. (1904). A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge.
[8] Izadi. M., Behzadmehr. A., & Jalali-Vahida. D. (2009). Numerical Study of Developing Laminar Forced Convection of A Nanofluid in An Annulus.
International Journal of Thermal Sciences, 48, 2119-2129.
https://doi.org/10.1016/j.ijthermalsci.2009.04.003
[9] Kaya. O. (2015). Numerical Investigation of Heat Transfer, Pressure Drop and Wall Shear Stress Characteristics of Al2O3-Water Nanofluid in a Square Duct.
Arabian Journal for Science and Engineering, 40, 3641-3655.
https://doi.org/10.1007/s13369-015-1790-y
[10] Ziad Saghir. M., Ahadi. A., Yousefi. T., & Farahbakhsh. B. (2016). Two-Phase and Single Phase Models of Flow of Nanofluid in A Square Cavity: Comparison with Experimental Results.
International Journal of Thermal Sciences, 100, 372-380.
https://doi.org/10.1016/j.ijthermalsci.2015.10.005
[11] Ternik. P., & Rudolf. R. (2013). Laminar Natural Convection of Non-Newtonian Nanofluids in A Square Enclosure with Differentially Heated Side Walls.
International Journal of Simulation Modelling, 12, 5-16.
https://doi.org/10.2507/IJSIMM12 (1)1.215
[12] Mliki, B, Abbassi, M. A., Omri, A. & Zeghmati, B. (2015). Augmentation of Natural Convective Heat Transfer in Linearly Heated Cavity by Utilizing Nanofluids in the Presence of Magnetic Field and Uniform Heat Generation/Absorption.
Powder Technology, 284, 312-325.
https://doi.org/10.1016/j.powtec.2015.06.068
[13] Mehryan, S. A. M., Izadi, M., Chamkha, A. J., & Sheremet, M. A. (2018). Natural Convection and Entropy Generation of A Ferrofluid in A Square Enclosure under the Effect of A Horizontal Periodic Magnetic Field.
Journal of Molecular Liquids, 263, 510-525.
https://doi.org/10.1016/j.molliq.2018.04.119
[14] Khanafer, Kh., Vafai, K. & Lightstone, M. (2003). Buoyancy-Driven Heat Transfer Enhancement in A Two-Dimensional Enclosure Utilizing Nanofluids.
International Journal of Heat and Mass Transfer, 46, 3639-3653.
https://doi.org/10.1016/S0017-9310(03)00156-X
[15] Ho, C. J. & Liu, W. K., Chang, Y. S. & Lin, C. C. (2010). Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study.
International Journal of Thermal Sciences, 49, 1345-1353.
https://doi.org/10.1016/j.ijthermalsci.2010.02.013
[16] Li, C. H., & Peterson, G. P. (2010). Experimental Studies of Natural Convection Heat Transfer of Al
2O
3/DI Water Nanoparticle Suspensions (Nanofluids).
Advances in Mechanical Engineering, 2, 742739.
https://doi.org/10.1155/2010/742739
[19] Behzadmehr, A., Saffar-Avval, M. & Galanis, N. (2007). Prediction of Turbulent Forced Convection of A Nanofluid in A Tube with Uniform Heat Flux Using A Two Phase Approach.
International Journal of Heat and Fluid Flow, 28, 211-219.
https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006
[20] Akbari, M., Galanis, N. & Behzadmehr, A. (2011). Comparative Analysis of Single and Two-Phase Models for CFD Studies of Nanofluid Heat Transfer.
International Journal of Thermal Sciences, 50, 1343-1354.
https://doi.org/10.1016/j.ijthermalsci.2011.03.008
[21] Alsabery, A., Tayebi, T., Chamkha, A. & Hashim, I., (2018). Effects of Non-Homogeneous Nanofluid Model on Natural Convection in a Square Cavity in the Presence of Conducting Solid Block and Corner Heater.
Energies, 11, 2507-2518.
https://doi.org/10.3390/en11102507
[22] Hazeri-Mahmel. N., Shekari. Y., & Tayebi. A. (2018). Numerical Study of Mixed Convection Heat Transfer in A Cavity Filled with Non-Newtonian Nanofluids Utilizing Two-Phase Mixture Model.
Amirkabir Journal of Mechanical Engineering, 50(6), 389-392.
https://doi.org/10.22060/mej.2017.12504.5355
[24] Mohammadpourfard. M. (2015). Numerical Study of Magnetic Fields Effects on the Electrical Conducting Non-Newtonian Ferrofluid Flow Through A Vertical Channel.
Modares Mechanical Engineering Journal, 15(1), 379-389.
http://dorl.net/dor/20.1001.1.10275940.1394.15.1.38.4
[25] Fattahi, A. (2021). The Effect of Cross-Section Geometry on the Performance of A Solar Nanofluid Heater in A Parabolic Solar Receiver: A Comparison Study.
Journal of the Taiwan Institute of Chemical Engineers, 124, 17-28.
https://doi.org/10.1016/j.jtice.2021.05.014
[27] Baghsaz, S., Rezanejad, S., & Moghimi, M. (2019). Numerical Investigation of Transient Natural Convection and Entropy Generation Analysis in A Porous Cavity Filled with Nanofluid Considering Nanoparticles Sedimentation.
Journal of Molecular Liquids, 279, 327-341.
https://doi.org/10.1016/j.molliq.2019.01.117
[28] A.G. Olabi, Wilberforce, T., Sayed, E. T., Elsaid, K., Atiqure Rahman, S. M., & Abdelkareem, M. A. (2021). Geometrical Effect Coupled with Nanofluid on Heat Transfer Enhancement in Heat Exchangers.
International Journal of Thermofluids, 10, 100072.
https://doi.org/10.1016/j.ijft.2021.100072
[29] Ghachem, K., Aich, W., & Kolsi, L. (2021). Computational Analysis of Hybrid Nanofluid Enhanced Heat Transfer in Cross Flow Micro Heat Exchanger with Rectangular Wavy Channels.
Case Studies in Thermal Engineering, 24, 100822.
https://doi.org/10.1016/j.csite.2020.100822
[30] Giwa, S. O., Sharifpur, M., Murshed, S. M. S., & Meyer, J. P. (2023). Application of Nanofluids: Natural Convection in Cavities. in S. S. Sonawane & M. Sharifpur (Eds.),
Nanofluid Applications for Advanced Thermal Solutions (pp. 117-149), Elsevier.
https://doi.org/10.1016/B978-0-443-15239-9.00005-9
[32] Turkyilmazoglu, M., & Duraihem, F. Z. (2023). Fully Developed Fow in A Long Triangular Channel under An Applied Magnetic Field.
Magnetism and Magnetic Materials, 578, 170803.
https://doi.org/10.1016/j.jmmm.2023.170803
[33] Vesilind, P. A. (1968). Theoretical Considerations: Design of Prototype Thickeners from Batch Settling Tests. Water Sewage Works, 115(7), 302-307.
[34] Boussinesq, V. J. (1903). Théorie Analytique De La Chaleur: Mise En Harmonie Avec La Thermodynamique Et Avec La Théorie Mécanique De La Lumière, Gauthier-Villars.
[35] Maı̈ga, S., Nguyen, C., Galanis, N., & Roy, G. (2004). Heat Transfer Behaviors of Nanofluid in A Uniformly Heated Tube.
Superlattices and Microstructures, 35, 543-557.
https://doi.org/10.1016/j.spmi.2003.09.012
[36] Vradis. G. C., & Hammad. Kh. J. (1995). Heat Transfer in Flows of Non-Newtonian Bingham Fluids Through Axisymmetric Sudden Expansions and Contractions.
Numerical Heat Transfer, Part A: Applications, 28(3), 339-353.
https://doi.org/10.1080/10407789508913749
[37] Brennan D. & University of London. (2001). The Numerical Simulation of Two Phase Flows in Settling Tanks (Dissertation). University of London.
[38] Ternik, P., & Rudolf, R. (2012). Heat Transfer Enhancement for Natural Convection Fow of Water Based nanofluids in A Square Enclosure.
International Journal of Simulation Modelling, 11(1), 29-39.
https://doi.org/10.2507/IJSIMM11(1)3.198