[1] Alipour, M. & Eslami-Farsani, R., (2017). Synthesis and Characterization of Graphene Nanoplatelets Reinforced AA7068 Matrix Nanocomposites Produced by Liquid Metallurgy Route.
Materials Science and Engineering: A, 706, 71-82.
https://doi.org/10.1016/j.msea.2017.08.092
[4] Daehn, G. S., Starck, B., Xu, L., Elfishawy, K. F., Ringnalda, J., & Fraser, H. L. (1996). Elastic and Plastic Behavior of A Co-Continuous Alumina/Aluminum Composite.
Acta Materialia, 44(1), 249-261.
https://doi.org/10.1016/1359-6454(95)00138-8
[5] Chen, Y., & Chung, D. D. L. (1994). Silicon-Aluminium Network Composites Fabricated by Liquid Metal Infiltration.
Journal of Materials Science, 29, 6069-6075.
https://doi.org/10.1007/BF00354543
[6] Klassen, T., Günther, R., Dickau, B., Gärtner, F., Bartels, A., Bormann, R., & Mecking, H. (1998). Processing and Properties of Intermetallic/Ceramic Composites with Interpenetrating Microstructure.
Journal of the American Ceramic Society, 81(9), 2504-2506.
https://doi.org/10.1111/j.1151-2916.1998.tb02654.x
[7] Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A., & Hoffmann, M. J. (2004). Preparation of Interpenetrating Ceramic–Metal Composites.
Journal of the European ceramic society, 24(12), 3399-3408.
https://doi.org/10.1016/j.jeurceramsoc.2003.10.030
[8] Hammel, E. C., Ighodaro, O. R., & Okoli, O. I. (2014). Processing and Properties of Advanced Porous Ceramics: An Application Based Review.
Ceramics International, 40(10), 15351-15370.
https://doi.org/10.1016/j.ceramint.2014.06.095
[9] Horny, D., Schukraft, J., Weidenmann, K. A., & Schulz, K. (2020). Numerical and Experimental Characterization of Elastic Properties of A Novel, Highly Homogeneous Interpenetrating Metal Ceramic Composite.
Advanced Engineering Materials, 22(7), 1901556.
https://doi.org/10.1002/adem.201901556
[11] Scherm, F., Völkl, R., Neubrand, A., Bosbach, F., & Glatzel, U. (2010). Mechanical Characterisation of Interpenetrating Network Metal–Ceramic Composites.
Materials Science and Engineering: A, 527(4-5), 1260-1265.
https://doi.org/10.1016/j.msea.2009.09.063
[12] Dolata, A. J. (2016). Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites.
Journal of Materials Engineering and Performance, 25, 3098-3106.
https://doi.org/10.1007/s11665-016-1901-2
[14] San Marchi, C., Kouzeli, M., Rao, R., Lewis, J. A., & Dunand, D. C. (2003). Alumina–Aluminum Interpenetrating Phase Composites with Three-Dimensional Periodic Architecture.
Scripta Materialia, 49(9), 861-866.
https://doi.org/10.1016/S1359-6462(03)00441-X
[16] Roy, S., Schell, K. G., Bucharsky, E. C., Weidenmann, K. A., Wanner, A., & Hoffmann, M. J. (2019). Processing and Characterization of Elastic and Thermal Expansion Behavior of Interpenetrating Al12Si/Alumina Composites.
Materials Science and Engineering: A, 743, 339-348.
https://doi.org/10.1016/j.msea.2018.11.100
[17] Kota, N., Sai Charan, M., Laha, T., Roy, S. (2022). Review on Development of Metal/Ceramic Interpenetrating Phase Composites and Critical Analysis of Their Properties.
Ceramics International, 48(2), 1451-1483.
https://doi.org/10.1016/j.ceramint.2021.09.232
[18] Roudini, G., Tavangar, R., Weber, L., & Mortensen, A. (2010). Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforced Aluminum Composites.
International Journal of Materials Research, 101(9), 1113-1120.
https://doi.org/10.3139/146.110388
[19] Kouzeli, M. & Dunand, D. C. (2003). Effect of Reinforcement Connectivity on the Elasto-Plastic Behavior of Aluminum Composites Containing Sub-Micron Alumina Particles.
Acta Materialia, 51, 6105-6121.
https://doi.org/10.1016/S1359-6454(03)00431-2
[22] Che, Z., Li, J., Wang, Q., Wang, L., Zhang, H., Zhang, Y., & Kim, M. J. (2018). The Formation of Atomic-Level Interfacial Layer and Its Effect on Thermal Conductivity of W-Coated Diamond Particles Reinforced Al Matrix Composites.
Composites Part A: Applied Science and Manufacturing, 107, 164-170.
https://doi.org/10.1016/j.compositesa.2018.01.002
[23] Abyzov, A. M., Shakhov, F. M., Averkin, A. I., & Nikolaev, V. I. (2015). Mechanical Properties of A Diamond–Copper Composite with High Thermal Conductivity.
Materials & Design, 87, 527-539.
https://doi.org/10.1016/j.matdes.2015.08.048
[24] Chen, C., Xie, Y., Yan, X., Ahmed, M., Lupoi, R., Wang, J., & Yin, S. (2020). Tribological Properties of Al/Diamond Composites Produced by Cold Spray Additive Manufacturing.
Additive Manufacturing, 36, 101434.
https://doi.org/10.1016/j.addma.2020.101434
[25] Jiao, Z., Kang, H., Zhou, B., Kang, A., Wang, X., Li, H., & Wei, Q. (2022). Research Progress of Diamond/Aluminum Composite Interface Design.
Functional Diamond, 2(1), 25-39.
https://doi.org/10.1080/26941112.2022.2050953
[26] Xie, H., Chen, Y., Zhang, T., Zhao, N., Shi, C., He, C., & Liu, E. (2020). Adhesion, Bonding and Mechanical Properties of Mo Doped Diamond/Al (Cu) Interfaces: A First Principles Study.
Applied Surface Science, 527, 146817.
https://doi.org/10.1016/j.apsusc.2020.146817
[27] Khosravi, H., Eslami-Farsani, R., & Askari-Paykani, M. (2014). Modeling and Optimization of Cooling Slope Process Parameters for Semi-Solid Casting of A356 Al Alloy.
Transactions of Nonferrous Metals Society of China, 24(4), 961-968.
https://doi.org/10.1016/S1003-6326(14)63149-6
[28] Zhang, Y., Rhee, K. Y., Hui, D., & Park, S. (2018). A Critical Review of Nanodiamond Based Nanocomposites: Synthesis, Properties and Applications.
Composites Part B: Engineering, 143, 19-27.
https://doi.org/10.1016/j.compositesb.2018.01.028