Fabrication method, microstructural characteristics, and hardness behavior of an interpenetrating phases hybrid aluminum/alumina-nanodiamond composite

Document Type : Research Article

Authors

Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

In the present work, the addition effects of nanodiamond (ND) on the microstructure and hardness behavior of interpenetrating phases hybrid Al/Al2O3 metal matrix composites were investigated. The fabrication of the composites was done via a two-step process. In the first step, hybrid Al2O3-ND preforms were prepared, and then molten pure Al alloy was infiltrated into the preforms. The preforms were fabricated by the replica method using a polyurethane foam and an Al2O3-ND slurry with various ND contents (0, 1, 3, and 10 vol%). The preforms were sintered at 1500 °C for 4 h under argon gas protection. Finally, the composites were fabricated by Al melt infiltration into the preforms via the squeeze casting method. The microstructure of the fabricated composites was analyzed using optical and scanning electron microscopes. The hardness of the composites was measured using a Vickers hardness tester. The results of the microstructural evaluations demonstrated a good distribution of ND in the preform. By increasing the ND content from 0 to 10 vol%, the matrix average grain size decreased from 143 μm to 76 μm. The results of the Vickers hardness test showed that increasing the volume percentage of ND increased the composite hardness to 263.8 Vickers at 10 vol%. The two main strengthening mechanisms for these composites are the Orowwn mechanism (volume fraction of ND particles) and the Hal-Petch mechanism (grain size), which affect the hardness behavior.

Graphical Abstract

Fabrication method, microstructural characteristics, and hardness behavior of an interpenetrating phases hybrid aluminum/alumina-nanodiamond composite

Highlights

  • Microstructure and hardness of interpenetrating phases hybrid aluminum/alumina-nanodiamond composites were investigated.
  • A good distribution of diamond nanoparticles in the preform was observed.
  • Increasing the volume percentage of diamond nanoparticles increased the hardness of the composite to 263.8 Vickers at 10 vol%.

Keywords

Main Subjects


Copyright © 2023 The Author(s). Published by IROST.

[1] Alipour, M. & Eslami-Farsani, R., (2017). Synthesis and Characterization of Graphene Nanoplatelets Reinforced AA7068 Matrix Nanocomposites Produced by Liquid Metallurgy Route. Materials Science and Engineering: A, 706, 71-82. https://doi.org/10.1016/j.msea.2017.08.092
[2] Clarke, D. R. (1992). Interpenetrating Phase Composites. Journal of the American Ceramic Society, 75(4), 739-758. https://doi.org/10.1111/j.1151-2916.1992.tb04138.x
[3] Zhou, W., Hu, W., & Zhang, D. (1998). Study on the Making of Metal-Matrix Interpenetrating Phase Composites. Scripta Materialia, 39(12), 1743-1748. https://doi.org/10.1016/S1359-6462(98)00367-4
[4] Daehn, G. S., Starck, B., Xu, L., Elfishawy, K. F., Ringnalda, J., & Fraser, H. L. (1996). Elastic and Plastic Behavior of A Co-Continuous Alumina/Aluminum Composite. Acta Materialia, 44(1), 249-261.
https://doi.org/10.1016/1359-6454(95)00138-8
[5] Chen, Y., & Chung, D. D. L. (1994). Silicon-Aluminium Network Composites Fabricated by Liquid Metal Infiltration. Journal of Materials Science, 29, 6069-6075. https://doi.org/10.1007/BF00354543
[6] Klassen, T., Günther, R., Dickau, B., Gärtner, F., Bartels, A., Bormann, R., & Mecking, H. (1998). Processing and Properties of Intermetallic/Ceramic Composites with Interpenetrating Microstructure. Journal of the American Ceramic Society, 81(9), 2504-2506. https://doi.org/10.1111/j.1151-2916.1998.tb02654.x
[7] Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A., & Hoffmann, M. J. (2004). Preparation of Interpenetrating Ceramic–Metal Composites. Journal of the European ceramic society, 24(12), 3399-3408.
https://doi.org/10.1016/j.jeurceramsoc.2003.10.030
[8] Hammel, E. C., Ighodaro, O. R., & Okoli, O. I. (2014). Processing and Properties of Advanced Porous Ceramics: An Application Based Review. Ceramics International, 40(10), 15351-15370. https://doi.org/10.1016/j.ceramint.2014.06.095
[9] Horny, D., Schukraft, J., Weidenmann, K. A., & Schulz, K. (2020). Numerical and Experimental Characterization of Elastic Properties of A Novel, Highly Homogeneous Interpenetrating Metal Ceramic Composite. Advanced Engineering Materials, 22(7), 1901556. https://doi.org/10.1002/adem.201901556
[10] Konopka, K., & Szafran, M. (2006). Fabrication of Al2O3–Al Composites by Infiltration Method and Their Characteristic. Journal of Materials Processing Technology, 175(1-3), 266-270. https://doi.org/10.1016/j.jmatprotec.2005.04.046
[11] Scherm, F., Völkl, R., Neubrand, A., Bosbach, F., & Glatzel, U. (2010). Mechanical Characterisation of Interpenetrating Network Metal–Ceramic Composites. Materials Science and Engineering: A, 527(4-5), 1260-1265. https://doi.org/10.1016/j.msea.2009.09.063
[12] Dolata, A. J. (2016). Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites. Journal of Materials Engineering and Performance, 25, 3098-3106.
https://doi.org/10.1007/s11665-016-1901-2
[13] Binner, J., Chang, H., & Higginson, R. (2009). Processing of Ceramic-Metal Interpenetrating Composites. Journal of the European Ceramic Society, 29(5), 837-842. https://doi.org/10.1016/j.jeurceramsoc.2008.07.034
[14] San Marchi, C., Kouzeli, M., Rao, R., Lewis, J. A., & Dunand, D. C. (2003). Alumina–Aluminum Interpenetrating Phase Composites with Three-Dimensional Periodic Architecture. Scripta Materialia, 49(9), 861-866.
https://doi.org/10.1016/S1359-6462(03)00441-X
[15] Oliveira, F. C., Dias, S., Vaz, M. F., & Fernandes, J. C. (2006). Behaviour of Open-Cell Cordierite Foams Under Compression. Journal of the European Ceramic Society, 26(1-2), 179-186.
https://doi.org/10.1016/j.jeurceramsoc.2004.10.008
[16] Roy, S., Schell, K. G., Bucharsky, E. C., Weidenmann, K. A., Wanner, A., & Hoffmann, M. J. (2019). Processing and Characterization of Elastic and Thermal Expansion Behavior of Interpenetrating Al12Si/Alumina Composites. Materials Science and Engineering: A, 743, 339-348. https://doi.org/10.1016/j.msea.2018.11.100
[17] Kota, N., Sai Charan, M., Laha, T., Roy, S. (2022). Review on Development of Metal/Ceramic Interpenetrating Phase Composites and Critical Analysis of Their Properties. Ceramics International, 48(2), 1451-1483. 
https://doi.org/10.1016/j.ceramint.2021.09.232
[18] Roudini, G., Tavangar, R., Weber, L., & Mortensen, A. (2010). Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforced Aluminum Composites. International Journal of Materials Research, 101(9), 1113-1120. https://doi.org/10.3139/146.110388
[19] Kouzeli, M. & Dunand, D. C. (2003). Effect of Reinforcement Connectivity on the Elasto-Plastic Behavior of Aluminum Composites Containing Sub-Micron Alumina Particles. Acta Materialia, 51, 6105-6121.
https://doi.org/10.1016/S1359-6454(03)00431-2
[20] Parr, M. D., & Reinhard, D. K. (2006). Electrical Properties of Thin Nanocrystalline Diamond Based Structures. Diamond and Related Materials, 15(2-3), 207-211. https://doi.org/10.1016/j.diamond.2005.10.019
[21] Das, P., Paul, S., & Bandyopadhyay, P. P. (2018). HVOF Sprayed Diamond Reinforced Nano-Structured Bronze Coatings. Journal of Alloys and Compounds, 746, 361-369. https://doi.org/10.1016/j.jallcom.2018.02.307
[22] Che, Z., Li, J., Wang, Q., Wang, L., Zhang, H., Zhang, Y., & Kim, M. J. (2018). The Formation of Atomic-Level Interfacial Layer and Its Effect on Thermal Conductivity of W-Coated Diamond Particles Reinforced Al Matrix Composites. Composites Part A: Applied Science and Manufacturing, 107, 164-170. https://doi.org/10.1016/j.compositesa.2018.01.002
[23] Abyzov, A. M., Shakhov, F. M., Averkin, A. I., & Nikolaev, V. I. (2015). Mechanical Properties of A Diamond–Copper Composite with High Thermal Conductivity. Materials & Design, 87, 527-539.
https://doi.org/10.1016/j.matdes.2015.08.048
[24] Chen, C., Xie, Y., Yan, X., Ahmed, M., Lupoi, R., Wang, J., & Yin, S. (2020). Tribological Properties of Al/Diamond Composites Produced by Cold Spray Additive Manufacturing. Additive Manufacturing, 36, 101434. https://doi.org/10.1016/j.addma.2020.101434
[25] Jiao, Z., Kang, H., Zhou, B., Kang, A., Wang, X., Li, H., & Wei, Q. (2022). Research Progress of Diamond/Aluminum Composite Interface Design. Functional Diamond, 2(1), 25-39. https://doi.org/10.1080/26941112.2022.2050953
[26] Xie, H., Chen, Y., Zhang, T., Zhao, N., Shi, C., He, C., & Liu, E. (2020). Adhesion, Bonding and Mechanical Properties of Mo Doped Diamond/Al (Cu) Interfaces: A First Principles Study. Applied Surface Science, 527, 146817. https://doi.org/10.1016/j.apsusc.2020.146817
[27] Khosravi, H., Eslami-Farsani, R., & Askari-Paykani, M. (2014). Modeling and Optimization of Cooling Slope Process Parameters for Semi-Solid Casting of A356 Al Alloy. Transactions of Nonferrous Metals Society of China, 24(4), 961-968.
https://doi.org/10.1016/S1003-6326(14)63149-6
[28] Zhang, Y., Rhee, K. Y., Hui, D., & Park, S. (2018). A Critical Review of Nanodiamond Based Nanocomposites: Synthesis, Properties and Applications. Composites Part B: Engineering, 143, 19-27.
https://doi.org/10.1016/j.compositesb.2018.01.028
[29] Miller, W. S., & Humphreys, F. J., (1991). Strengthening Mechanisms in Particulate Metal Matrix Composites. Scripta Metallurgica et Materialia, 25(1), 33-38. https://doi.org/10.1016/0956-716X(91)90349-6