Heavy metal removal using SnO2 nanoparticles prepared in a grape extract media

Document Type : Research Article

Author

Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

SnO2 nanoparticles were first synthesized using a grape extract media, then characterized by XRD, FE-SEM, TEM, BET, and DLS techniques, and finally used as an efficient adsorbent for the removal of Pb2+ and Cd2+ ions from wastewater. The prepared sample had a tetragonal phase with an average crystallite size of 41 nm (XRD analysis), a specific surface area of 47.08 m2.g-1 (BET method)/46.25 m2.g-1 (BJH method), and a pore diameter of 6.49 nm (BJH method). The best conditions for adsorbing were a 30 ppm concentration of metal ions, ambient temperature, pH of 6, and 0.025 g of an adsorbent. The maximum adsorption for Pb and Cd ions was 97 and 93%, respectively. The Elovich model was matched as the most suitable kinetic model, indicating that the adsorption mechanism is chemical adsorption. The negative values of ΔG (Pb: -6.38 kJ.mol-1; Cd: -4.16 kJ.mol-1) represent the spontaneousness of the adsorption process. The negative values of the parameters ΔH (Pb: -63.0 kJ.mol-1; Cd: -42.95  kJ.mol-1) and ΔS (Pb: -188.8 J.mol-1; Cd: -128.4 J.mol-1) represent the exothermic nature of the adsorption.

Graphical Abstract

Heavy metal removal using SnO2 nanoparticles prepared in a grape extract media

Highlights

  • The biosynthesis of SnO2 nanoparticles using a grape extract media is reported.
  • SnO2 nanoparticles were characterized by XRD, FESEM, TEM, BET, and DLS techniques.
  • SnO2 nanoparticles were used as an efficient adsorbent for the removal of Pb2+ and Cd2+ ions from wastewater.
  • The effect of different parameters including adsorbent dosage, Cd and Pb concentration, temperature, and on the adsorption was investigated.

Keywords

Main Subjects


Copyright © 2023 The Author(s). Published by IROST.

[1] Karmaoui, M., Jorge, A. B., McMillan, P. F., Aliev, A. E., Pullar, R. C., Labrincha, J. A., & Tobaldi, D. M. (2018). One-Step Synthesis, Structure, and Band Gap Properties of SnO2 Nanoparticles Made by a Low Temperature Nonaqueous Sol-Gel Technique. ACS Omega 3(10), 13227-13238. https://doi.org/10.1021/acsomega.8b02122
[2] Naz, S., Javid, I., Konwar, S., Surana, K., Singh, P. K., Sahni, M., & Bhattacharya, B. (2020). A Simple Low Cost Method for Synthesis of SnO2 Nanoparticles and Its Characterization. SN Applied Sciences, 2, 975.
https://doi.org/10.1007/s42452-020-2812-2
[3] Dehbashi, M., Aliahmad, M., Shafiee, M. R. M., & Ghashang, M. (2013). SnO2 Nanoparticles: Preparation and Evaluation of Their Catalytic Activity in the Oxidation of Aldehyde Derivatives to Their Carboxylic Acid and Sulfides to Sulfoxide Analogs. Phosphorus, Sulfur, and Silicon and the Related Elements, 188(7), 864-872.
https://doi.org/10.1080/10426507.2012.717139
[4] Dehbashi, M., Aliahmad, M., Shafiee, M. R. M., & Ghashang, M. (2013). Nickel-Doped SnO2 Nanoparticles: Preparation and Evaluation of Their Catalytic Activity in the Synthesis of 1-Amidoalkyl-2-Naphtholes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(9), 1301-1306. https://doi.org/10.1080/15533174.2012.757753
[5] Sathishkumar, M., & Geethalakshmi, S. (2020). Enhanced Photocatalytic and Antibacterial Activity of Cu: SnO2 Nanoparticles Synthesized by Microwave Assisted Method. Materials Today: Proceedings 20(Part 1), 54-63.
https://doi.org/10.1016/j.matpr.2019.08.246
[6] Xuemei, P., Dan, Z., & Haitao, C., Preparation Method of Efficient Single-Phase SnO2 Photocatalyst, CN105749902A (issued July 13, 2016).
[7] Suriya, P., Prabhu, M., Satheesh Kumar, E., & Jagannathan, K. (2022). Effect of Ag Doping on Structural, Optical, Complex Impedance and Photovoltaic Properties of SnO2 Nanoparticles Prepared by Co-Precipitation Method for Dye Sensitized Solar Cell Application. Optik ,260, 168971. https://doi.org/10.1016/j.ijleo.2022.168971
[8] Godlaveeti, S. K., Somala, A. R., Sana, S. S., Ouladsmane, M., Ghfar, A. A., & Nagireddy, R. R. (2022). Evaluation of pH Effect of Tin Oxide (SnO2) Nanoparticles on Photocatalytic Degradation, Dielectric and Supercapacitor Applications. Journal of Cluster Science, 33, 1635-1644. https://doi.org/10.1007/s10876-021-02092-7
[9] Patel, G. H., Chaki, S. H., Kannaujiya, R. M., Parekh, Z. R., Hirpara, A. B., Khiman, A. J., & Deshpande, M. P. (2021). Sol-Gel Synthesis and Thermal Characterization of SnO2 Nanoparticles. Physica B: Condensed Matter, 613, 412987. https://doi.org/10.1016/j.physb.2021.412987
[10] Ghashang, M., Mansoor, S. S., Mohammad Shafiee, M. R., Kargar, M., Najafi Biregan, M., Azimi, F., & Taghrir, H. (2016). Green Chemistry Preparation of MgO Nanopowders: Efficient Catalyst for the Synthesis of Thiochromeno[4,3-b]pyran and Thiopyrano[4,3-b]pyran Derivatives. Journal of Sulfur Chemistry, 37(4), 377-390.
https://doi.org/10.1080/17415993.2016.1149856
[11] Ghashang, M., Mansoor, S. S., Shams Solaree, L., & Sharifian-Esfahani, A. (2016). Multi-Component, One-Pot, Aqueous Media Preparation of Dihydropyrano[3,2-c]chromene Derivatives Over MgO Nanoplates as An Efficient Catalyst. Iranian Journal of Catalysis, 6(3), 237-243. https://journals.iau.ir/article_560293.html
[12] Ghashang, M., Kargar, M., Shafiee, M. R. M., Mansoor, S. S., Fazlinia, A., & Esfandiari, H. (2015). CuO Nanostructures Prepared in Rosmarinus Officinalis Leaves Extract Medium: Efficient Catalysts for the Aqueous Media Preparation of Dihydropyrano[3,2-c]chromene Derivatives. Recent Patents on Nanotechnology, 9(3), 204-211.
https://doi.org/10.2174/1872210510999151126110657
[13] Shafiee, M. R. M., Kargar, M., Hashemi, M. S., & Ghashang, M. (2016). Green Synthesis of NiFe2O4/Fe2O3/CeO2 Nanocomposite in a Walnut Green Hulls Extract Medium: Magnetic Properties and Characterization. Current Nanoscience, 12(5), 645-649. https://doi.org/10.2174/1573413712666160513124809
[14] Shafiee, M. R. M., Kargar, M., & Ghashang, M. (2018). Characterization and Low-Cost, Green Synthesis of Zn2+ Doped MgO Nanoparticles. Green Processing and Synthesis, 7(3), 248-254. https://doi.org/10.1515/gps-2016-0219
[15] Mobinikhaledi, A., Yazdanipour, A., & Ghashang, M. (2016). Green Chemistry Preparation of MgO Grit Like Nanostructures: Efficient Catalyst for the Synthesis of 4H-Pyrans and α,α′-Bis(substituted-benzylidene)cycloalkanone Derivatives. Green Processing and Synthesis, 5(3), 289-295. https://doi.org/10.1515/gps-2015-0136
[16] Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes: A Review. Ecotoxicology and Environmental Safety, 148, 702-712. https://doi.org/10.1016/j.ecoenv.2017.11.034
[17] Afroze, S., & Sen, T. K. (2018). A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water, Air, & Soil Pollution, 229, 225. https://doi.org/10.1007/s11270-018-3869-z
[18] Fu, F., & Wang, Q. (2011). Removal of Heavy Metal Ions from Wastewaters: A Review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
[19] Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review. Journal of Hazardous Materials, 211-212, 317-331.
https://doi.org/10.1016/j.jhazmat.2011.10.016
[20] Le, A. T., Pung, S.-Y., Sreekantan, S., Matsuda, A., & Huynh, D. P. (2019). Mechanisms of Removal of Heavy Metal Ions by ZnO Particles. Heliyon 5(4), e01440. https://doi.org/10.1016/j.heliyon.2019.e01440
[21] Kumar, K. Y., Muralidhara, H. B., Nayaka, Y. A., Balasubramanyam, J., & Hanumanthappa, H. (2013). Low-Cost Synthesis of Metal Oxide Nanoparticles and Their Application in Adsorption of Commercial Dye and Heavy Metal Ion in Aqueous Solution. Powder Technology, 246, 125-136. https://doi.org/10.1016/j.powtec.2013.05.017
[22] Sunil, K., Karunakaran, G., Yadav, S., Padaki, M., Zadorozhnyy, V., & Pai, R. K. (2018). Al-Ti2O6 A Mixed Metal Oxide Based Composite Membrane: A Unique Membrane for Removal of Heavy Metals. Chemical Engineering Journal, 348, 678-684. https://doi.org/10.1016/j.cej.2018.05.017
[23] Chang, Y.-Y., Lee, S.-M., & Yang, J.-K. (2009). Removal of As(III) and As(V) by Natural and Synthetic Metal Oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346(1-3), 202-207. 
https://doi.org/10.1016/j.colsurfa.2009.06.017
[24] Chen, Y. H., & Li, F. A. (2010). Kinetic Study on Removal of Copper (II) Using Goethite and Hematite Nano-Photocatalysts. Journal of Colloid and Interface Science, 347(2), 277-281. https://doi.org/10.1016/j.jcis.2010.03.050
[25] Hu, J., Chen, G. H., & Lo, I. M. C. (2005). Removal and Recovery of Cr(VI) rom Wastewater by Maghemite Nanoparticles. Water Research, 39(18), 4528-4236. https://doi.org/10.1016/j.watres.2005.05.051
[26] Giammar, D. E., Maus, C. J., & Xie, L. Y. (2007). Effects of Particle Size and Crystalline Phase on Lead Adsorption to Titanium Dioxide Nanoparticles. Environmental Engineering Science, 24(1), 85-95. https://doi.org/10.1089/ees.2007.24.85
[27] Madzokere, T. C., & Karthigeyan, A. (2017). Heavy Metal Ion Effluent Discharge Containment Using Magnesium Oxide (MgO) Nanoparticles. Materials Today: Proceedings, 4(1), 9-18. https://doi.org/10.1016/j.matpr.2017.01.187
[28] Hristovski, K. D., Westerhoff, P. K., Crittenden, J. C., & Olson, L. W. (2008). Arsenate Removal by Nanostructured ZrO2 Spheres. Environmental Science & Technology, 42(1), 3786-3790. https://doi.org/10.1021/es702952p
[29] Colón, J., Casals, E., González, E., Puntes, V., Sánchez, A., & Font, X. (2010). Chromium VI Adsorption on Cerium Oxide Nanoparticles and Morphology Changes During the Process. Journal of Hazardous Materials, 184(1-3), 425-431. https://doi.org/10.1016/j.jhazmat.2010.08.052
[30] Hussein, B. Y., & Mohammed, A. M. (2021). Biosynthesis And Characterization of Nickel Oxide Nanoparticles by Using Aqueous Grape Extract and Evaluation of Their Biological Applications. Results in Chemistry, 3,100142.
https://doi.org/10.1016/j.rechem.2021.100142
[31] Bastos-Arrieta, J., Florido, A., Pérez-Ràfols, C., Serrano, N., Fiol, N., Poch, J., & Villaescusa, I. (2018). Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. Nanomaterials 8(11), 946. https://doi.org/10.3390/nano8110946
[32] Dziwoń, K., Pulit-Prociak, J., & Banach, M. (2015). Green Technologies in Obtaining Nanomaterials - Using White Grapes (Vitis vinifera) in the Processes for the Preparation of Silver Nanoparticles. Chemik ,69(1), 33-38.
[33] Said, M. I., & Othman, A. A. (2019). Fast Green Synthesis of Silver Nanoparticles Using Grape Leaves Extract. Materials Research Express, 6(5), 055029. https://doi.org/10.1088/2053-1591/ab0481
[34] Luo, F., Yang, D., Chen, Z., Megharaj, M., & Naidu, R. (2016). Characterization of  Bimetallic Fe/Pd  Nanoparticles by Grape Leaf Aqueous Extract andIdentification of Active Biomolecules Involved in the Synthesis. Science of The Total Environment, 562, 526-532. https://doi.org/10.1016/j.scitotenv.2016.04.060
[35] Krishnaswamy, K., Vali, H., 7 Orsat, V. (2014). Value-Adding to Grape Waste: Green Synthesis of Gold Nanoparticles. Journal of Food Engineering, 142, 210-220. https://doi.org/10.1016/j.jfoodeng.2014.06.014
[36] Hussein, B. Y., & Mohammed, A. M. (2021). Green Synthesis of ZnO Nanoparticles in Grape Extract: Their Application as Anti-cancer and Anti-bacterial. Materials Today: Proceedings, 42(Part 3), A18-A26.
https://doi.org/10.1016/j.matpr.2021.03.729
[37] Yaragalla, S., Rajendran, R., Jose, J., AlMaadeed, M. A., Kalarikkal, N., & Thomas, S. (2016). Preparation and Characterization of Green Graphene Using Grape Seed Extract for Bioapplications. Materials Science and Engineering: C, 65, 345-353. https://doi.org/10.1016/j.msec.2016.04.050
[38] Khosravian, P., Ghashang, M., & Ghayoor, H. (2017). Effective Removal of Penicillin from Aqueous Solution Using Zinc Oxide/Natural-Zeolite Composite Nano-Powders Prepared Via Ball Milling Technique. Recent Patents on Nanotechnology, 11(2), 154-164. https://doi.org/10.2174/1872210511666170105141550
[39] Ekubatsion, L. H., Thriveni, T., & Ahn, J. W. (2021). Removal of Cd2+ and Pb2+ from Wastewater through Sequent Addition of KR-Slag, Ca(OH)2 Derived from Eggshells and CO2 Gas. ACS Omega 6(42), 27600-27609.
https://doi.org/10.1021/acsomega.1c00946
[40] Al-Mur, B. A. (2023). Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+). Water, 15(3), 455. https://doi.org/10.3390/w15030455
[41] Khorram Abadi, V., Habibi, D., Heydarib, S., & Ariannezhad, M. (2023). The Effective Removal of Ni2+, Cd2+, and Pb2+ from Aqueous Solution by Adenine-based Nanoadsorbent. RSC Advances, 13, 5970-5982.
https://doi.org/10.1039/D2RA07230K
[42] Gharib, A., Faezizadeh, Z., & Godarzee, M. (2013). Treatment of Diabetes in the Mouse Model by Delphinidin and Cyanidin Hydrochloride in Free and Liposomal Forms. Planta Medica, 79(17), 1599-1604.
https://doi.org/10.1055/s-0033-1350908
[43] Sabra, A., Netticadan, T., & Wijekoon, C. (2021). Grape Bioactive Molecules, and the Potential Health Benefits in Reducing the Risk of Heart Diseases. Food Chemistry: X, 12, 100149. https://doi.org/10.1016/j.fochx.2021.100149
[44] Šikuten, I., Štambuk, P., Andabaka, Ž., Tomaz, I., Marković, Z., Stupić, D., Maletić, E., Kontić, J. K., & Preiner, D. (2020). Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 25(23), 5604.
https://doi.org/10.3390/molecules25235604
[45] Manzoor, K., Ahmad, M., Ahmad, S., & Ikram, S. (2019). Removal of Pb(II) and Cd(II) from Wastewater Using Arginine Crosslinked Chitosan-Carboxymethyl Cellulose Beads as Green Adsorbent. RSC Advances, 9(14),7890-7892. https://doi.org/10.1039/C9RA00356H
[46] Iftikhar, A. R., Bhatti, H. N., Hanif, M. A., & Nadeem, R. (2009). Kinetic and Thermodynamic Aspects of Cu(II) and Cr(III) Removal from Aqueous Solutions Using Rose Waste Biomass. Journal of Hazardous Materials, 161(2-3), 941-947. https://doi.org/10.1016/j.jhazmat.2008.04.040
[47] Ebrahimian, J., Mohsennia, M., & Khayatkashani, M. (2020). Photocatalytic-Degradation of Organic Dye and Removal of Heavy Metal Ions Using Synthesized SnO2 Nanoparticles by Vitex Agnus-Castus Fruit Via a Green Route. Materials Letters, 263, 127255. https://doi.org/10.1016/j.matlet.2019.127255
[48] Ahmed, M., Elektorowicz, M., & Hasan, S. W. (2019). GO, SiO2, and SnO2 Nanomaterials as Highly Efficient Adsorbents for Zn2+ from Industrial Wastewater - A Second Stage Treatment to Electrically Enhanced Membrane Bioreactor. Journal of Water Process Engineering, 31, 100815. https://doi.org/10.1016/j.jwpe.2019.100815
[49] Feng, L., He, R., Li, H., Wang, J., Chen, S., Liu, N., Liu, G., Wang, X., & Zhao, G. (2023). An Efficient Pretreatment Method Based on Agnps-Doped SnO2 Photocatalyst for the Accurate Detection of Heavy Metals in Organic-Rich Water Samples. Chemosphere, 344, 140270. https://doi.org/10.1016/j.chemosphere.2023.140270
[50] Kumar, K. Y., Vinuth Raj, T. N., Archana, S., Benaka Prasad, S. B., Olivera, S., & Muralidhara, H. B. (2016). SnO2 Nanoparticles as Effective Adsorbents for the Removal of Cadmium and Lead from Aqueous Solution: Adsorption Mechanism and Kinetic Studies. Journal of Water Process Engineering, 13, 44-52.
https://doi.org/10.1016/j.jwpe.2016.07.007
[51] Mahmoud, M. E., Abdelwahab, M. S., & Ibrahim, G. A. A. (2022). The Design of SnO2-Crosslinked-Chitosan Nanocomposite for Microwave-Assisted Adsorption of Aqueous Cadmium and Mercury Ions. Sustainable Chemistry and Pharmacy, 28, 100731. https://doi.org/10.1016/j.scp.2022.100731
[52] Alkayal, N. S. (2022). Fabrication of Cross-linked PMMA/SnO2 Nanocomposites for Highly Efficient Removal of Chromium (III) from Wastewater. Polymers 14(10), 2101. https://doi.org/10.3390/polym14102101