Feasibility study on the use of MIL-53(Al) as a support for iron catalysts in the CO hydrogenation reaction

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

The study examined the potential use of MIL-53(Al), a metal-organic compound created through solvothermal synthesis, as a support for iron catalysts in Fischer-Tropsch Synthesis (FTS). Fischer-Tropsch synthesis is a crucial aspect of Gas-to-Liquid (GTL) technology used in the petrochemical industry to produce light olefins. The catalyst's activity was assessed under specific conditions, including a gas hourly space velocity (GHSV) of 2700 h-1, a hydrogen to carbon monoxide (H2/CO) feed ratio of 2:1, temperatures ranging from 310 to 330 ℃, and pressures ranging from 5 to 9 bar. The feasibility study indicated that MIL-53(Al) has the potential to be a suitable support for iron catalysts in FTS, resulting in the production of light olefins (24%) at high temperatures and low pressure.

Graphical Abstract

Feasibility study on the use of MIL-53(Al) as a support for iron catalysts in the CO hydrogenation reaction

Highlights

  • A novel Fe/MIL-53(Al) Fischer-Tropsch catalyst was synthesized using a solvothermal method.
  • MIL-53(Al) was found to be a proper metal-organic framework for use as a support of iron catalysts in high temperature and low pressure.
  • Light olefins (up to 24%) were obtained during the Fischer-Tropsch synthesis over 0.5 g of Fe/MIL-53(Al) in a fixed-bed reactor.

Keywords

Main Subjects


Copyright © 2023 The Author(s). Published by IROST.

[1] Abid, H. R., Rada, Z. H., Duan, X., Sun, H., & Wang, S. (2017). Enhanced CO2 Adsorption and Selectivity of CO2/N2 on Amino-MIL-53 (Al) Synthesized by Polar Co-Solvents. Energy & Fuels, 32(4), 4502-4510.
https://doi.org/10.1021/acs.energyfuels.7b03240
[2] Rowsell, J. L. C. & Yaghi, O. M. (2005). Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angewandte Chemie International Edition, 44(30), 4670-4679. https://doi.org/10.1002/anie.200462786
[3] Yu, S., Yong, H., Zhao, Y., Wang, S., Chen, Y., Hu, J., Liu, B. & Zhang, Y. (2023). Synergistic Catalytic Effects of Ni MOF Catalyst and Re Alloying on the Hydrogen Absorption/Desorption Kinetics of MgH2. Materials Letters, 348, 134674.
https://doi.org/10.1016/j.matlet.2023.134674
[4] Lin, Y., Kong, C., Zhang, Q., & Chen, L. (2017). Metal‐Organic Frameworks for Carbon Dioxide Capture and Methane Storage, Advanced Energy Materials, 7(4),  1601296. https://doi.org/10.1002/aenm.201601296
[5] He, Q., Shen, J., Guan, X., Han, Y., Jiang, X., Shen, X., Huang, X., Chen, Y., Lei, C., Xiao, X. & Lin, W. (2022). A Zr‐Based MOF with N‐Heterocycle and Its pH‐Controlled Drug Release Behavior. Zeitschrift für anorganische und allgemeine Chemie, 648(1), e202100248. https://doi.org/10.1002/zaac.202100248
[6] Tannert, N., Gökpinar, S., Hastürk, E., Nießing, S., & Janiak, C. (2018). Microwave-Assisted Dry-Gel Conversion- A New Sustainable Route for the Rapid Synthesis of Metal-Organic Frameworks with Solvent Re-use. Dalton Transactions, 47(29), 9850-9860. https://doi.org/10.1039/C8DT02029A
[7] Naghdi, S., Shahrestani, M. M., Zendehbad, M., Djahaniani, H., Kazemian, H. & Eder, D. (2023). Recent Advances in Application of Metal-Organic Frameworks (MOFs) as Adsorbent and Catalyst in Removal of Persistent Organic Pollutants (POPs). Journal of Hazardous Materials, 442, 130127. https://doi.org/10.1016/j.jhazmat.2022.130127
[8] Deng, Q. & Wang, R. (2019). Heterogeneous MOF Catalysts for the Synthesis of Trans-4,5-Diaminocyclopent-2-enones from Furfural and Secondary Amines. Catalysis Communications, 120, 11-16.
https://doi.org/10.1016/j.catcom.2018.11.009
[9] Golestan, S., Mirzaei, A. A., & Atashi, H. (2017). Kinetic and Mechanistic Studies of Fischer-Tropsch Synthesis Over the Nano-structured Iron–Cobalt–Manganese Catalyst Prepared by Hydrothermal Procedure. Fuel, 200, 407-418. https://doi.org/10.1016/j.fuel.2017.03.087
[10] Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium (III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 124(45), 13519-13526.
https://doi.org/10.1021/ja0276974
[11] Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T., & Percheron-Guegan, A. (2003). Hydrogen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53. Chemical Communications, (24), 2976-2977. https://doi.org/10.1039/B308903G
[12] Taheri, A., Babakhani, E. G., & Towfighi, J. (2018). Study of Synthesis Parameters of MIL-53(Al) Using Experimental Design Methodology for CO2/CH4 Separation. Adsorption Science & Technology, 36(1-2), 247-269. https://doi.org/10.1177/0263617416688690
[13] Menghuan, C., Zhou, L., Di, L., Yue, L., Honghui, N., Yaxi, P., Hongkun, X., Weiwei, P., & Shuren, Z. (2018). RuCo Bimetallic Alloy Nanoparticles Immobilized on Multi-Porous MIL-53(Al) as a Highly Efficient Catalyst for the Hydrolytic Reaction of Ammonia Borane, International Journal of Hydrogen Energy, 43(3), 1439-1450. https://doi.org/10.1016/j.ijhydene.2017.11.160
[14] Gao, Y., Kang, R., Xia, J., Yu, G., & Deng, S. (2019). Understanding the Adsorption of Sulfonamide Antibiotics on MIL-53s: Metal Dependence of Beathing Effect and Adsorptive Performance in Aqueous Solution. Journal of Colloid and Interface Science, 535, 159-168.
https://doi.org/10.1016/j.jcis.2018.09.090
[15] Isaeva, V., Eliseev, O., Kazantsev, R., Chernyshev, V., Davydov, P., Saifutdinov, B., Lapidus, A., & Kustov, L. (2016). Fischer–Tropsch Synthesis Over MOF-Supported Cobalt Catalysts (Co@ MIL-53 (Al)). Dalton Transactions, 45(30), 12006-12014. https://doi.org/10.1039/C6DT01394E
[16] Zohdi-Fasaei, H., Atashi, H., Tabrizi, F. F. & Mirzaei, A. A. (2016). Exploiting The Effects of Catalyst Geometric Properties to Boost The Formation of Light Olefins in Fischer-Tropsch Synthesis: Statistical Approach for Simultaneous Optimization. Journal of Natural Gas Science and Engineering, 35(Part A), 1025-1031.
https://doi.org/10.1016/j.jngse.2016.09.040
[17] Tavasoli, A., Sadagiani, K., Khorashe, F., Seifkordi, A., Rohani, A., & Nakhaeipour, A. (2008). Cobalt Supported on Carbon Nanotubes - A Promising Novel Fischer–Tropsch Synthesis Catalyst. Fuel Processing Technology, 89(5), 491-498. 
https://doi.org/10.1016/j.fuproc.2007.09.008
[18] Bessell, S. (1993). Support Effects in Cobalt-Based Fischer-Tropsch Catalysis. Applied Catalysis A: General,  96(2), 253-268. https://doi.org/10.1016/0926-860X(90)80014-6
[19] Isaeva, V. I., Eliseev, O. L., Kazantsev, R.V., Chernyshev, V. V., Tarasov, A. L., Davydov, P. E., Lapidus, A. L., & Kustov, L. M. (2019). Effect of the Support Morphology on the Performance of Co Nanoparticles Deposited on Metal–Organic Famework MIL-53(Al) in Fischer–Tropsch Synthesis. Polyhedron, 157, 389-395.
https://doi.org/10.1016/j.poly.2018.10.001
[20] An, B., Cheng, K., Wang, C., Wang, Y., & Lin, W. (2016). Pyrolysis of Metal–Organic Frameworks to Fe3O4@ Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 6(6), 3610-3618. https://doi.org/10.1021/acscatal.6b00464
[21] Wezendonk, T. A., Warringa, Q. S., Santos, V. P., Chojecki, A., Ruitenbeek, M., Meima, G., Makkee, M., Kapteijn, F., & Gascon, J. (2017). Structural and Elemental Influence from Various MOFs on the Performance of Fe@C Catalysts for Fischer–Tropsch Synthesis. Faraday Discussions, 197, 225-242.
https://doi.org/10.1039/C6FD00198J
[22] Sun, B., Tan, H., Liu, S., Lyu, S., Zhang, X., Zhang, Y., Li, J., Wang, L. (2019). Novel Cobalt Catalysts Supported on Metal–Organic Frameworks MIL‐53 (Al) for the Fischer–Tropsch Synthesis. Energy Technology, 7(4), 1800802. https://doi.org/10.1002/ente.201800802
[23] Wei, Q., Li, W., Jin, C., Chen, Y., Hou, L., Wu, Z., Pan, Z., He, Q., Wang, Y. & Tang, D. (2022). A Stable and Efficient La-Doped MIL-53(Al)/ZnO Photocatalyst for Sulfamethazine Degradation. Journal of Rare Earths, 40(4), 595-604. https://doi.org/10.1016/j.jre.2021.02.001
[24] Molina, M. A., Díez-Jaén, J., Sánchez-Sánchez, M. & Blanco, R. M. (2022). One-Pot Laccase@MOF Biocatalysts Efficiently Remove Bisphenol A from Water. Catalysis Today, 390-391, 265-271.
https://doi.org/10.1016/j.cattod.2021.10.005
[25] Chang, Y. -W. & Chang, B. K. (2018). Influence of Casting Solvents on Sedimentation and Performance in Metal–Organic Framework Mixed-Matrix Membranes. Journal of the Taiwan Institute of Chemical Engineers, 89, 224-233. https://doi.org/10.1016/j.jtice.2018.05.006
[26] Zhang, S., Zhou, L., Chen, M. (2018). Amine-Functionalized MIL-53(Al) with Embedded Ruthenium Nanoparticles as a Highly Efficient Catalyst for the Hydrolytic Dehydrogenation of Ammonia Borane. RSC Advances, 8(22), 12282-12291.
https://doi.org/10.1039/C8RA01507D