[1] Comini, L. R., Núñez Montoya, S. C., Sarmiento, M., Cabrera, J. L., & Argüello, G. A. (2007). Characterizing Some Photophysical, Photochemical and Photobiological Properties of Photosensitizing Anthraquinones.
Journal of Photochemistry and Photobiology A, 188(2-3), 185-191.
https://doi.org/10.1016/j.jphotochem.2006.12.011
[2] Cape, J. L., Bowman, M. K., & Kramer, D. M. (2005). Reaction Intermediates of Quinol Oxidation in a Photoactivatable System that Mimics Electron Transfer in the Cytochrome
bc1 Complex.
Journal of the American Chemical Society, 127(12), 4208-4215.
https://doi.org/10.1021/ja043955g[3] Colucci, M. A., Moody, C. J., & Couch, G. D. (2008). Natural and Synthetic Quinones and Their Reduction by the Quinone Reductase Enzyme NQO1: From Synthetic Organic Chemistry to Compounds with Anticancer Potential.
Organic & Biomolecular Chemistry, 6(4), 637-656.
https://doi.org/10.1039/b715270a[4] Szrebowaty, P., & Kapturkiewicz, A. (2000). Free Energy Dependence on Tris(2,2′-bipyridine)ruthenium(II) Electrochemiluminescence Efficiency.
Chemical Physics Letters, 328(1-2), 160-168.
https://doi.org/10.1016/S0009-2614(00)00922-2[5] Bae, E., Choi, W., Park, J., Shin, H. S., Kim, S. B., Lee, J. S. (2004). Effects of Surface Anchoring Groups (Carboxylate vs Phosphonate) in Ruthenium-Complex-Sensitized TiO2 on Visible Light Reactivity in Aqueous Suspensions.
Journal of Physical Chemistry B, 108(37), 14093-14101.
https://doi.org/10.1021/jp047777p[6] Hayashi, S., & Kato, S. (1998). Solvent Effect on Intramolecular Long-Range Electron-Transfer Reactions between Porphyrin and Benzoquinone in an Acetonitrile Solution: Molecular Dynamics Calculations of Reaction Rate Constants.
Journal of Physical Chemistry A, 102(19), 3333-3342.
https://doi.org/10.1021/jp980934y[7] Rosokha, S. V., & Kochi, J. K.(2008). Fresh Look at Electron-Transfer Mechanisms via the Donor/Acceptor Bindings in the Critical Encounter Complex.
Accounts of Chemical Research, 41(5), 641-653.
https://doi.org/10.1021/ar700256a[8] Sumitha Celin, T., Allen Gnana Raj, G. (2018). Binding Studies of Ruthenium(II) Polypyridyl Complexes with Quinones in Triton X-100.
Chemical Science Transactions, 7(4), 703-707.
https://doi.org/10.7598/cst2018.1540[9] Sangiliapillai, R., Arumugam, R., Eswaran, R., & Seenivasan, R. (2016). Micellar Effect on the Photophysics of Heteroleptic Ruthenium(II)-Phenanthrolinedisulfonato Complexes.
Luminescence, 31(1), 30-37.
https://doi.org/10.1002/bio.2917[10] Adeloye, A. O., Olomola, T. O., Adebayo, A. I., & Ajibade, P. A. (2012). A High Molar Extinction Coefficient Bisterpyridyl Homoleptic Ru(II) Complex with trans-2-Methyl-2-butenoic Acid Functionality: Potential Dye for Dye-Sensitized Solar Cells.
International Journal of Molecular Sciences, 13(3), 3511-3526.
https://doi.org/10.3390/ijms13033511
[11] Zheng, Z., Huang, Q. Y., Han, Y. F., Zuo, J., & Ma, Y. -N. (2017). Ruthenium(II) Complex-Based Chemosensors for Highly Sensitive and Selective Sequential Recognition of Copper Ion and Cyanide.
Sensors and Actuators. Part B, 253, 203-212.
https://doi.org/10.1016/j.snb.2017.06.145[12] Duan, L., Bozoglian, F., Mandal, S., Stewart, B., Privalov, T., Llobet, A., & Sun, L. (2012). A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to That of Photosystem II.
Nature Chemistry, 4(5), 418-423.
https://doi.org/10.1038/nchem.1301[13] Chen, Z., Chen, C., Weinberg, D. R., Kang, P., Concepcion, J. J., Harrison, D. P., & Meyer, T. J. (2011). Electrocatalytic Reduction of CO
2 to CO by Polypyridylruthenium Complexes.
Chemical Communications, 47(47), 12607-12609.
https://doi.org/10.1039/c1cc15071e[14] Ohzu, S., Ishizuka, T., Hirai, Y., Fukuzumi, S., & Kojima, T.(2013). Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium Polypyridyl Amine Complexes as Catalysts with High Efficiency and Selectvity.
Chemistry, An European Journal, 19(5), 1563-1567.
https://doi.org/10.1002/chem.201203430[15] Mareeswaran, P. M., Babu, E., & Rajagopal, S. (2013). Optical Recognition of Anions by Ruthenium(II)-Bipyridine-Calyx[4]Arene System.
Journal of Fluorescence, 23(5), 997-1006.
https://doi.org/10.1007/s10895-013-1226-6[16] Babu, E., Mareeswaran, P. M., & Rajagopal, S.(2013).Highly Sensitive Optical Biosensor for Thrombin Based on Structure Switching Aptamer Luminescent Silica Nanoparticles.
Journal of Fluorescence, 23(1), 137-146.
https://doi.org/10.1007/s10895-012-1127-0[17] Mareeswaran, P. M., Maheshwaran, D., Babu, E., & Rajagopal, S. (2012). Binding and Fluorescence Resonance Energy Transfer (FRET) of Ruthenium(II)-Bipyridine-Calixarene System with Proteins-Experimental and Docking Studies.
Journal of Fluorescence, 22(5), 1345-1356.
https://doi.org/10.1007/s10895-012-1074-9
[18] Taheri, S., Behzad, M., Nazari, H., & Khaleghian, A. (2013). Synthesis, Characterization and Biological Studies of New Ruthenium Polypyridyl Complexes Containing Noninnocent Ligands.
ISRN Inorganic Chemistry, 2013, 623962 .
https://doi.org/10.1155/2013/623962[19] Gill, M. R., & Thomas, J. A. (2012). Ruthenium(II) Polypyridyl Complexes and DNA - From Structural Probes to Cellular Imaging and Therapeutics.
Chemical Society Reviews, 41(8), 3179-3192.
https://doi.org/10.1039/c2cs15299a[20] Wang, S., Xing, Songzhu, Shi, Z., He, Jiachen, Han, Q., & Li, M. (2017). Electrostatic Polypyridine - Ruthenium(II)... Decatungstate Dyads: Structure, Characterizations and Photodegradation of Dye.
RSC Advances, 7(29), 18024-18031.
https://doi.org/10.1039/C7RA01342F[21] Kitamura, N., Kim, H. B., Okano, S., & Tazuke, S. (1989). Photoinduced Electron-Transfer Reactions of Ruthenium(II) Complexes. 1. Reductive Quenching of Excited Tris(2,2'-bipyridine)ruthenium(2+) by Aromatic Amines.
Journal of Physical Chemistry, 93(15), 5750-5756.
https://doi.org/10.1021/j100352a021[22] Sumitha Celin, T., Allen Gnana Raj, G. (2020). Photoinduced Electron Transfer Reactions of Tris(4,4'-dimethoxy-2,2'-bipyridyl)ruthenium(II) Cation with Quinones in Aqueous Medium.
Advanced Materials Letters, 11(11), 1-6.
https://doi.org/10.5185/amlett.2020.111575[23] Rajkumar, E., Mareeswaran, P.M., & Rajagopal, S. (2014). Photophysical Properties of Amphiphilic Ruthenium(II) Complexes in Micelles.
Photochemical and Photobiological Sciences, 13(9), 1261-1269.
https://doi.org/10.1039/c4pp00043a[24] Lakowicz, J. R. (1999).
Principles of Fluorescence Spectroscopy (2
nd ed.). Plenum Press, New York.
[25] Previtali, C. M. (1995). Solvent Effects on Intermolecular Electron Transfer Processes.
Pure and Applied Chemistry, 67(1), 127-134.
https://doi.org/10.1351/pac199567010127