[1] Hayat, M. D., Singh, H., He, Z., & Cao, P. (2019). Titanium Metal Matrix Composites: An Overview.
Composites Part A: Applied Science and Manufacturing, 121, 418-438.
https://doi.org/10.1016/j.compositesa.2019.04.005[2] Bommala, V. K., Krishna, M. G., & Rao, C. T. (2019). Magnesium Matrix Composites For Biomedical Applications: A Review.
Journal of Magnesium and Alloys, 7(1), 72-79.
https://doi.org/10.1016/j.jma.2018.11.001[3] Babul, T., Baranowski, M., Sobczak, N., Homa, M., & Leśniewski, W. (2016). Thermophysical Properties of Cu-Matrix Composites Manufactured Using Cu Powder Coated with Graphene.
Journal of Materials Engineering and Performance, 25(8), 3146-3151.
https://doi.org/10.1007/s11665-016-2174-5[4] Ryelandt, S., Mertens, A., & Delannay, F. (2015). Al/Stainless-Invar Composites with Tailored Anisotropy for Thermal Management in Light Weight Electronic Packaging.
Materials & Design, 85, 318-323.
https://doi.org/10.1016/j.matdes.2015.06.178[5] Aynalem, G. F. (2020). Processing Methods and Mechanical Properties of Aluminium Matrix Composites.
Advances in Materials Science and Engineering, 2020, 3765791.
https://doi.org/10.1155/2020/376579[6] Dorri Moghadam, A., Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2015). Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene – A review.
Composites Part B: Engineering, 77, 402-420.
https://doi.org/10.1016/j.compositesb.2015.03.014[7] Wang, W., Zhou, H., Wang, Q., Wei, B., Xin, S., & Gao, Y. (2020). Microstructural Evolution and Mechanical Properties of Graphene-Reinforced Ti-6Al-4V Composites Synthesized via Spark Plasma Sintering.
Metals, 10(6).
https://doi.org/10.3390/met10060737[8] Mortensen, A., & Llorca, J. (2010). Metal Matrix Composites.
Annual Review of Materials Research, 40(1), 243-270.
https://doi.org/10.1146/annurev-matsci-070909-104511[9] Roudini, G., Tavangar, R., Weber, L., & Mortensen, A. (2010). Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforced Aluminium Composites. Dedicated to Professor Dr. H.-P. Degischer on the occasion of his 65
th birthday.
International Journal of Materials Research,
101(9), 1113-1120.
https://doi.org/10.3139/146.110388[10] Roudini, G., Asgharian, M., & Khosravi, M. (2013). High Volume Fraction Aluminum /Alumina-Fused Silica Hybrid Particulate Metal Matrix Composite.
Advanced Materials Research, 701, 3-7.
https://doi.org/10.4028/www.scientific.net/AMR.701.3[11] Nishida, Y. (2013).
Introduction to Metal Matrix Composites: Fabrication and Recycling. Springer Japan.
[12] Nie, K. B., Wang, X. J., Deng, K. K., Hu, X. S., & Wu, K. (2021). Magnesium Matrix Composite Reinforced by Nanoparticles – A Review.
Journal of Magnesium and Alloys, 9(1), 57-77.
https://doi.org/10.1016/j.jma.2020.08.018[13] Ye, H. Z., & Liu, X. Y. (2004). Review of Recent Studies in Magnesium Matrix Composites.
Journal of Materials Science, 39(20), 6153-6171.
https://doi.org/10.1023/B:JMSC.0000043583.47148.31[14] Ye, H., Liu, X. Y., & Hong, H. (2008). Fabrication of Metal Matrix Composites by Metal Injection Molding - A Review.
Journal of Materials Processing Technology, 200(1), 12-24.
https://doi.org/10.1016/j.jmatprotec.2007.10.066[15] Falodun, O. E., Obadele, B. A., Oke, S. R., Okoro, A. M., & Olubambi, P. A. (2019). Titanium-Based Matrix Composites Reinforced with Particulate, Microstructure, and Mechanical Properties Using Spark Plasma Sintering Technique: A Review.
International Journal of Advanced Manufacturing Technology, 102(5-8), 1689-1701.
https://doi.org/10.1007/s00170-018-03281-x[16] Zhang, M., Yu, Q., Liu, Z., Zhang, J., Tan, G., Jiao, D., Zhu, W, Li, S, Zhang, Z., Yang, R, & Ritchie, R. O. 3D Printed Mg-NiTi Interpenetrating-Phase Composites with High Strength, Damping Capacity, and Energy Absorption Efficiency.
Science Advances, 6(19), eaba5581.
https://doi.org/10.1126/sciadv.aba5581[17] Saidi, H., Roudini, G., & Afarani, M. S. (2015). High-Volume-Fraction Cu/Al
2O
3–SiC Hybrid Interpenetrating Phase Composite.
Applied Physics A, 121(1), 109-113.
https://doi.org/10.1007/s00339-015-9392-9[18] Roy, S., Schell, K. G., Bucharsky, E. C., Hettich, P., Dietrich, S., Weidenmann, K. A., Wanner, A., & Hoffmann, M. J. (2012). Processing and Elastic Property Characterization of Porous SiC Preform for Interpenetrating Metal/Ceramic Composites.
Journal of the American Ceramic Society, 95(10), 3078-3083.
https://doi.org/10.1111/j.1551-2916.2012.05347.x[19] Kumar, A., Kumar, S., Mukhopadhyay, N. K., Yadav, A., & Sinha, D. K. (2022). Effect of TiC Reinforcement on Mechanical and Wear Properties of AZ91 Matrix Composites.
International Journal of Metalcasting, 16(4), 2128-2143.
https://doi.org/10.1007/s40962-021-00747-9[20] Steinacher, M., Žužek, B., Jenko, D., Mrvar, P., & Zupanič, F., (2016). Manufacturing and Properties of a Magnesium Interpenetrating Phase Composite.
Strojniški vestnik - Journal of Mechanical Engineering, 62(2), 79-85.
https://doi.org/10.5545/sv-jme.2015.2840[21] Cáceres, C. H., & Poole, W. J. (2002). Hardness and Flow Strength in Particulate Metal Matrix Composites.
Materials Science and Engineering: A, 332(1), 311-317.
https://doi.org/10.1016/S0921-5093(01)01744-0[22] Liu, L., Cao, F., Lu, L., & Yan, J. (2017). Effect of Sintering Temperature of Mo Skeleton on the Contiguity and Compressive Properties of Mo-Cu IPCS.
Journal of Materials Engineering and Performance, 26(2), 522-529.
https://doi.org/10.1007/s11665-016-2471-z[23] La Vecchia, G. M., Badini, C., Puppo, D., & D''Errico, F. (2003). Co-Continuous Al/Al
2O
3 Composite Produced by Liquid Displacement Reaction: Relationship Between Microstructure and Mechanical Behavior.
Journal of Materials Science, 38(17), 3567-3577.
https://doi.org/10.1023/A:1025613011787[24] Bauer, J., Sala-Casanovas, M., Amiri, M., & Valdevit, L. (2022). Nanoarchitected Metal/Ceramic Interpenetrating Phase Composites.
Science Advances, 8(33), eabo3080.
https://doi.org/10.1126/sciadv.abo3080[25] Kota, N., Charan, M. S., Laha, T., & Roy, S. (2022). Review on Development of Metal/Ceramic Interpenetrating Phase Composites and Critical Analysis of Their Properties.
Ceramics International, 48(2), 1451-1483.
https://doi.org/10.1016/j.ceramint.2021.09.232