[1] Shi, B., Qi, P., Jiang, M., Dai, Y., Lin, F., Zhanga, H., & Fang, Z. (2021). Exotic physical properties of 2D materials modulated by moiré superlattices.
Materials Advances, 2(17), 5542-5559.
https://doi.org/10.1039/D1MA00263E
[2] Manikandan, A., Chen, Y.-Z., Shen, C.-C., Sher, C.-W. Kuo, H.-C., & Chueh, Y.-L. (2019). Critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics.
Progress in Quantum Electronics, 68, 100226.
https://doi.org/10.1016/j.pquantelec.2019.100226
[3] Singh, K. J., Ahmed, T., Gautam, P., Sadhu, A. S., Lien, D.-H., Chen, S.-C., Chueh, Y.-L. & Kuo, H.-C. (2021).Recent advances in two-dimensional quantum dots and their applications.
Nanomaterials, 11(6), 1549.
https://doi.org/10.3390/nano11061549
[4] Garshasbia, S., Huangb, S., Valentac, J., & Santamouris, M. (2020). Can quantum dots help to mitigate urban overheating? An experimental and modeling study.
Solar Energy, 206, 308-316.
https://doi.org/10.1016/j.solener.2020.06.010
[6] Jahanshir, A. (2021). Quanto-relativistic background of strong electron-electron interactions in quantum dots under the magnetic field.
Journal of Optoelectronical Nanostructures, 6(3), 1-24.
https://doi.org/10.30495/JOPN.2021. 28742.1231
[9] Ghosh, D., Sarkar, K., Devi, P., Kim, K.-H., & Kumar, P. (2021). Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable
Energy Reviews, 135, 110391.
https://doi.org/10.1016/j.rser.2020.110391
[11] a. Gambhir, M., & Prasad, V. (2021). Dependence of nonlinear optical properties on electrostatic interaction in an excitonic parabolic quantum dot in a static magnetic field.
Journal of Modern Optics, 68(10), 542-554.
https://doi.org/10.1080/09500340.2021.1927228
b. Chouef, S., Mommadi, O., Boussetta, R., Belamkadem, L., Hbibi, M., El Moussaouy, A., Vinasco, J. A., Duque, C. A., El Hadi, M., & Falyouni, F. (2022). Impact of applied temperature and hydrostatic pressure on the off-center donor spectrum in spherical quantum dot.
Solid State Phenomena, 335, 31-41.
https://doi.org/10.4028/p-6h7el8
[12] Johnson, B. R., (1980). On a connection between radial Schrodinger equations for different power-law potentials.
Journal of Mathematical Physics, 21, 2640-2647.
https://doi.org/10.1063/1.524378
[13] De Guzman, J. A. T., Markevich, V. P., Coutinho, J., Abrosimov, N. V., Halsall, M. P., & Peaker, A. R. (2022). Electronic properties and sructure of boron–hydrogen complexes in crystalline silicon.
Solar RRL, 6(5), 2100459.
https://doi.org/10.1002/solr.202100459
[15] Avery, J. S. (1989).
Spherical harmonics: Applications in quantum theory (2nd ed.). Springer.
[16] Lumb, S., Talwar, S. L., & Prasad, V. (2022). Hydrogenic impurity in a distorted quantum disk: Effects of hydrostatic pressure and temperature on the optical properties.
The European Physical Journal Plus, 137, 672.
https://doi.org/10.1140/epjp/s13360-022-02882-6
[17] Gerlach, B., Wüsthoff, J., Dzero, M. O., & Smondyrev, M. A. (1998). Exciton binding energy in a quantum well,
Physical Review B, 58(16), 10568-10577.
https://doi.org/10.1103/PhysRevB.58.10568
[18] Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. (2001). Band parameters for III–V compound semiconductors and their alloys.
Journal of Applied Physics, 89(11), 5815-5875.
https://doi.org/10.1063/1.1368156