[1] Kiani, M., & Ebadzadeh, T. (2015). Effect of mechanical activation and microwave sintering on crystallization and mechanical strength of cordierite nanograins.
Ceramics International, 41(2) (Part A), 2342-2347.
https://doi.org/10.1016/j.ceramint.2014.10.044
[2] Srivastava, A., Singh, V. K., Kumar, V., & Kumar, P. H. (2014). Low cement castable based on auto combustion processed high alumina cement and mechanochemically synthesized cordierite: Formulation and properties.
Ceramics International, 40(9) (Part A), 14061-14072.
https://doi.org/10.1016/j.ceramint.2014.05.134
[3] Y. Li, Y., Cheng, X., Zhang, R., Wang, Y., & Zhang, H. (2015). Effect of Excess MgO on the Properties of Cordierite Ceramic Sintered by Solid‐State Method.
International Journal of Applied Ceramic Technology, 12(2), 443-450.
https://doi.org/10.1111/ijac.12174
[4] Tunç, T., & Demirkıran, A. Ş. (2014). The effects of mechanical activation on the sintering and microstructural properties of cordierite produced from natural zeolite.
Powder Technology, 260, 7-14.
https://doi.org/10.1016/j.powtec.2014.03.069
[5] Parcianello, G., Bernardo, E., & Colombo, P. (2013). Cordierite ceramics from silicone resins containing nano-sized oxide particle fillers.
Ceramics International, 39(8), 8893-8899.
https://doi.org/10.1016/j.ceramint.2013.04.083
[7] Aćimović-Pavlović, Z., Andrić, L., Milošević, V., & Milićević, S. (2011). Refractory coating based on cordierite for application in new evaporate pattern casting process.
Ceramics International, 37(1), 99-104.
https://doi.org/10.1016/j.ceramint.2010.08.028
[8] Redaoui, D., Sahnoune, F., Heraiz, M., & Saheb, N. (2018). Phase formation and crystallization kinetics in cordierite ceramics prepared from kaolinite and magnesia.
Ceramics International, 44(4), 3649-3657.
https://doi.org/10.1016/j.ceramint.2017.11.119
[9] Benito, J., Turrillas, X., Cuello, G., De Aza, A., De Aza, S., & Rodríguez, M. (2012). Cordierite synthesis. A time-resolved neutron diffraction study.
Journal of the European Ceramic Society, 32(2), 371-379.
https://doi.org/10.1016/j.jeurceramsoc.2011.09.010
[12] Abbasian, A. R., & Afarani, M. S. (2019). One-step solution combustion synthesis and characterization of ZnFe
2O
4 and ZnFe
1.6O
4 nanoparticles.
Applied Physics A, 125, 721.
https://doi.org/10.1007/s00339-019-3017-7
[14] Golsheikh, M. M., Arabi, A. M., & Afarani, M. S. (2019). Microwave assisted combustion synthesis of photoluminescent ZnAl
2O
4: Eu nano powders.
Materials Research Express, 6, 125052.
https://doi.org/10.1088/2053-1591/ab5869
[15] Shahmirzaee, M., Shafiee Afarani, M., Iran Nejhad, A., & Arabi, A. M. (2019). Microwave-assisted combustion synthesis of ZnAl
2O
4 and ZnO nanostructure particles for photocatalytic wastewater treatment.
Particulate Science and Technology, 37(1), 110-117.
https://doi.org/10.1080/02726351.2017.1350772
[16] Shahmirzaee, M., Shafiee Afarani, M., Arabi, A. M. & Iran Nejhad, A. (2017). In situ crystallization of ZnAl
2O
4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater.
Research on Chemical Intermediates, 43, 321-340.
https://doi.org/10.1007/s11164-016-2624-6