Fe3O4@SiO2/AEPTMS/Fe(OTf)3: An efficient superparamagnetic nanocatalyst for the protecting of alcohols

Document Type : Research Article

Authors

1 Institute of Nanoscience and Nanotechnology, University of Kashan, Iran

2 Department of Chemical Engineering, Islamic Azad University, Iranshahr Branch, Iranshahr, Iran

Abstract

Fe3O4@SiO2/AEPTMS/Fe(OTf)3 is a stable, effective, and magnetic nanocatalyst easily prepared and characterized using FT-IR spectroscopy, SEM, TEM, and VSM techniques. This nanocatalyst was successfully applied for trimethylsilylation of numerous alcohols (primary, secondary, and tertiary alcohols) with hexamethyldisilazane in 1 ml dichloromethane at room temperature to their corresponding trimethylsilyl (TMS) ethers. Quick response times and a simple reprocessing procedure are two fascinating advantages of this nanocatalyst. This catalyst protects alcohols at 1.5 min, and turn-over frequency (TOF) values for the presented catalytic system have been estimated 833 h-1.

Graphical Abstract

Fe3O4@SiO2/AEPTMS/Fe(OTf)3: An efficient superparamagnetic nanocatalyst for the protecting of alcohols

Highlights

  • Synthesis of Fe3O4@SiO2 / AEPTMS / Fe(OTf)3 as magnetic nanocatalyst.
  • Synthesis of fine spherical nanoparticles without agglomeration.
  • These nanocatalysts were used to protect the hydroxyl group in aromatic and linear alcohols.

Keywords

Main Subjects


Copyright © 2023 The Author(s). Published by IROST.

[1] Wuts, P. G. M., & Greene, T. W. (2006). Greene’s Protective Groups in Organic Synthesis. John Wiley & Sons.
[2] Azad, A., Dekamin, M. G., Afshar, S., Tadjarodi, A., & Mollahosseini, A. (2018). Activation of hexa-methyldisilazane (HMDS) by TiO2 nanoparticles for protection of alcohols and phenols: The effect of the catalyst phase on catalytic activity. Research on Chemical Intermediates, 44, 2951-2963. https://doi.org/10.1007/s11164-016-2519-6
[3] Mohammadiyan, E., Ghafuri, H., & Kakanejadifard, A. (2019). Synthesis and characterization of a bifunctional nanomagnetic solid acid catalyst (Fe3O4@CeO2/SO42−) and investigation of its efficiency in the protection process of alcohols and phenols via hexamethyldisilazane under solvent‐free conditions. Journal of the Chinese Chemical Society, 66(2), 171-178. https://doi.org/10.1002/jccs.201800056
[4] Uozumi, Y., & Tazawa, A. (2021). Protection and deprotection of alcohols by ising a Zn complex supported on magnetic nanoparticles. Synfacts, 17(07), 801. https://doi.org/10.1055/s-0040-1720418
[5] Sridhar, M., Raveendra, J., Ramanaiah, B. C., & Narsaiah, C.  (2011). An efficient synthesis of silyl ethers of primary alcohols, secondary alcohols, phenols and oximes with a hydrosilane using InBr3 as a catalyst. Tetrahedron Letters, 52(45), 5980-5982. https://doi.org/10.1016/j.tetlet.2011.08.151
[6] Shirini, F., & Mollarazi, E. (2007). Efficient trimethyl-silylation of alcohols and phenols in the presence of ZrCl4 as a reusable catalyst. Catalysis Communications, 8(9),1393-1396. https://doi.org/10.1016/j.catcom.2006.11.015
[7] Villabrille, P., Romanelli, G., Quaranta, N., & Vázquez, P. (2010). An efficient catalytic route for the preparation of silyl ethers using alumina-supported heteropolyoxometalates. Applied Catalysis B: Environmental, 96(3), 379-386.  https://doi.org/10.1016/j.apcatb.2010.02.035
[8] Ghafuri, H., Paravand, F., & Rashidizadeh, A. (2017). Nano Fe3O4@ZrO2/SO42−: A highly efficient catalyst for the protection and deprotection of hydroxyl groups using HMDS under solvent-free condition. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(1), 129-135. https://doi.org/10.1080/10426507.2016.1236104
[9] Zolfigol, M. A., Sajjadifar, S., Ghorbani-Choghamarani, A., & Tami, F. (2018). Application of a novel nano-immobilization of ionic liquid on an MCM-41 system for trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Research on Chemical Intermediates, 44, 7093-7106. https://doi.org/10.1007/s11164-018-3544-4
[10] Zareyee, D., Ghandali, M. S., & Khalilzadeh, M. A. (2011). Sulfonated ordered nanoporous carbon (CMK-5-SO3H) as an efficient and highly recyclable catalyst for the silylation of alcohols and phenols with hexamethyldisilazane (HMDS). Catalysis Letters, 141, 1521-1525. https://doi.org/10.1007/s10562-011-0621-3
[11] Abri, A., & Ranjdar, S. (2014). Preparation of nano silica supported sodium hydrogen sulfate: As an efficient catalyst for the trimethyl, triethyl and t-butyldimethyl silylations of aliphatic and aromatic alcohols in solution and under solvent-free conditions. Journal of the Chinese Chemical Society, 61(8), 929-934. https://doi.org/10.1002/jccs.201300586
[12] Yao, H., Wang, Y., Razi, M. K. (2021). An asymmetric Salamo-based Zn complex supported on Fe3O4 MNPs: A novel heterogeneous nanocatalyst for the silyl protection and deprotection of alcohols under mild conditions. RSC Advances, 11(21), 12614-12625. https://doi.org/10.1039/D1RA01185E
[13] Lu, A. -H., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie - International Edition in English, 46(8), 1222-1244. https://doi.org/10.1002/anie.200602866
[14] Majidi, S., Zeinali Sehrig, F., Farkhani, S. M., Soleymani Goloujeh, M., & Akbarzadeh, A. (2016). Current methods for synthesis of magnetic nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 722-734.  https://doi.org/10.3109/21691401.2014.982802
[15] Mohammadi, H., Nekobahr, E., Akhtari, J., Saeedi, M., Akbari, J., & Fathi, F. (2021). Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicology Reports, 8, 331-336. https://doi.org/10.1016/j.toxrep.2021.01.012
[16] Nayeem, J., Al-Bari, M. A. A., Mahiuddin, M., Abdur Rahman, M., Mefford, O. T., Ahmad, H., & Mahbubor Rahman, M. (2021). Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 611, 125857. https://doi.org/10.1016/j.colsurfa.2020.125857
[17] Unni, M., Uhl, A. M., Savliwala, S., Savitzky, B. H., Dhavalikar, R., Garraud, N., Arnold, D. P., Kourkoutis, L. F., Andrew, J. S., & Rinaldi, C. (2017). Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano, 11(2), 2284-2303. https://doi.org/10.1021/acsnano.7b00609
[18] Maleki, S. T., Babamoradi, M., Rouhi, M., Maleki, A., & Hajizadeh, Z. (2022). Facile hydrothermal synthesis and microwave absorption of halloysite/polypyrrole/Fe3O4. Synthetic Metals, 290, 117142. https://doi.org/10.1016/j.synthmet.2022.117142
[19] Ramadan, I., Moustafa, M. M., & Nassar, M. Y. (2022). Facile controllable synthesis of magnetite nanoparticles via a co-precipitation approach. Egyptian Journal of Chemistry, 65(9), 59-65. https://doi.org/10.21608/EJCHEM.2022.116869.5284
[20] Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P., & Williams, M. E. (2004). Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Letters, 4(4), 719-723. https://doi.org/10.1021/nl035253f
[21] Zhang, M., Cushing, B. L., & O’Connor, C. J.  (2008). Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology, 19(8), 85601. https://doi.org/10.1088/0957-4484/19/8/085601
[22] Perrotti, T. C., Freitas, N. S., Alzamora, M., Sanchez, D. R., & Carvalho, N. M. F. (2019). Green iron nanoparticles supported on amino-functionalized silica for removal of the dye methyl orange. Journal of Environmental Chemical Engineering, 7(4), 103237. https://doi.org/10.1016/j.jece.2019.103237
[23] Li, H., Chen, X., Shen, D., Wu, F., Pleixats, R., & Pan, J. (2021). Functionalized silica nanoparticles: Classification, synthetic approaches and recent advances in adsorption applications. Nanoscale, 13(38), 15998-16016.  https://doi.org/10.1039/D1NR04048K
[24] Wang,  C., Yang, L., Yuan, X., Zhou, W., Xu, M., & Yang, W. (2021). Fabrication of Ag nanoparticles supported on amino-functionalized peeled-watermelon structured silica-coated nano-Fe3O4 with enhanced catalytic activity for reduction of 4-nitrophenol. Colloid and Interface Science Communications, 45, 100521. https://doi.org/10.1016/j.colcom.2021.100521
[25] He, H., Meng, X., Yue, Q., Yin, W., Gao, Y., Fang, P., & Shen, L. (2021). Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg (II) capture and high catalytic activity of spent Hg (II) adsorbent. Chemical Engineering Journal, 405, 126743. https://doi.org/10.1016/j.cej.2020.126743
[26] Park, M. E., & Chang, J. H. (2007). High throughput human DNA purification with aminosilanes tailored silica-coated magnetic nanoparticles. Materials Science and Engineering: C, 27(5-8), 1232-1235. https://doi.org/10.1016/j.msec.2006.09.008
[27] Nayl, A. A., Abd-Elhamid, A. I., Aly, A. A., & Bräse,  S.  (2022). Recent progress in the applications of silica-based nanoparticles. RSC Advances, 12(22), 13706-13726. https://doi.org/10.1039/D2RA01587K
[28] Bauer, I., & Knölker, H. -J. (2015). Iron catalysis in organic synthesis. Chemical Reviews, 115(9), 3170-1387.  https://doi.org/10.1021/cr500425u
[29] Li, S., Li, H., Tung, C. -H., & Liu, L. (2022). Practical and selective bio-inspired iron-catalyzed oxidation of Si–H bonds to diversely functionalized organosilanols. ACS Catalysis, 12(15), 9143-9152. https://doi.org/10.1021/acscatal.2c02678
[30] Hu, P., Tan, M., Cheng, L., Zhao, H., Feng, R., Gu, W. -J. & Han, W. (2019). Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes. Nature Communications, 10(1), 2425.  https://doi.org/10.1038/s41467-019-10414-7
[31] Farrar‐Tobar, R. A., Wozniak, B., Savini, A., Hinze,  S., Tin, S., & de Vries, J. G. (2019). Base‐free iron catalyzed transfer hydrogenation of esters using EtOH as hydrogen source. Angewandte Chemie - International Edition in English, 58(4), 1129-1133. https://doi.org/10.1002/anie.201810605
[32] Lu, P., Ren, X., Xu, H., Lu, D., Sun, Y., & Lu, Z. (2021). Iron-catalyzed highly enantioselective hydrogenation of alkenes. Journal of the American Chemical Society, 143(32), 12433-12438. https://doi.org/10.1021/jacs.1c04773
[33] Kang, Y. C., Treacy, S. M., & Rovis, T. (2021). Iron-catalyzed photoinduced LMCT: A 1° C–H abstraction enables skeletal rearrangements and C(sp3)–H alkylation. ACS Catalysis, 11(12), 7442-7449. https://doi.org/10.1021/acscatal.1c02285
[34] Roy, S., Das, S. K., Khatua, H., Das, S., Singh, K. N., & Chattopadhyay, B. (2021). Iron‐catalyzed radical activation mechanism for denitrogenative rearrangement over C(sp3)–H amination. Angewandte Chemie - International Edition in English, 60(16), 8772-8780. https://doi.org/10.1002/anie.202014950
[35] Radhika, S., Aneeja, T., Philip, R. M., & Anilkumar, G. (2021). Recent advances and trends in the biomimetic iron‐catalyzed asymmetric epoxidation. Applied Organometallic Chemistry, 35(6), e6217. https://doi.org/10.1002/aoc.6217
[36] Mao, S., Budweg, S., Spannenberg, A., Wen, X., Yang, Y., Li, Y. -W., Junge, K., & Beller, M. (2022). Iron‐catalyzed epoxidation of linear α‐olefins with hydrogen peroxide. ChemCatChem, 14(4), e202101668. https://doi.org/10.1002/cctc.202101668
[37] Gao, M., Li, W., Dong, J., Zhang, Z., & Yang, B. (2011).  Synthesis and characterization of superparamagnetic Fe3O4@ SiO2 core-shell composite nanoparticles. World Journal of Condensed Matter Physics, 1(2), 49-54.  https://doi.org/10.4236/wjcmp.2011.12008
[38] Sheykhan, M., Yahyazadeh, A., & Ramezani, L. (2017).  A novel cooperative Lewis acid/Brønsted base catalyst Fe3O4@SiO2-APTMS-Fe(OH)2: An efficient catalyst for the Biginelli reaction. Molecular Catalysis, 435, 166-173.  https://doi.org/10.1016/j.mcat.2017.03.032
[39] Sanati, A. M., Kamari, S., & Ghorbani, F. (2019). Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core-shell magnetic nanohybrid. Surfaces and Interfaces, 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374
[40] Gonzalez-Carrillo, G., Gonzalez, J., Emparan-Legaspi, M. J., Lino-Lopez, G. J., Aguayo-Villarreal, I. A., Ceballos-Magaña, S. G., Martinez-Martinez, F. J., & Muñiz-Valencia, R. (2020). Propylsulfonic acid grafted on mesoporous siliceous FDU-5 material: A high TOF catalyst for the synthesis of coumarins via Pechmann condensation. Microporous and Mesoporous Materials, 307, 110458. https://doi.org/10.1016/j.micromeso.2020.110458