[1] Huang, X., Cui, W., Yu, J., Lu, S. & Liao, X. (2022). Preparation of mesoporous MnO2 catalysts with different Mmorphologies for catalytic ozonation of organic compounds. Catal. Lett. 152(5) 1441-1450.
[2] Keykavoos, R., Mankidy, R., Ma, H., Jones, P., & Soltan, J. (2013). Mineralization of bisphenol A by catalytic ozonation over alumina. Sep. Purif. Technol. 107, 310-317.
[3] Wang, Z., Wang, Z., Li, W., Lan, Y., & Chen, C. (2022). Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α, β, γ, and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation. Chem. Eng. J. 427, 130888.
[4] Yan, P., Ye, Y., & Wang, M. (2022). Catalytic ozonation of phenol by ZnFe2O4 / ZnNCN: performance and mechanism. Environ. Sci. Pollut. R. 29, 88172-88181
[5] Jans, U., & Hoigné, J. (1998). Activated carbon and carbon black catalyzed tansformation of aqueous ozone into OH-radicals. Ozone-Sci. Eng. 20(1) 67-90.
[6] Gül, Ş., Eren, O., Kır, Ş., & Önal, Y. (2012). A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye. Water Sci. Technol. 66(1) 179-184.
[7] Zhang, T., Li, W., & Croué, J. P. (2012). A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water. Appl. Catal. B- Environ. 121-122, 88-94.
[8] Hao, L., Huiping, D., & Jun, S. (2012). Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons. J. Mol.Catal. A-Chem. 363-364, 101-107.
[9] Ikhlaq, A., Brown, D. R., & Kasprzyk-Hordern, B. (2013). Mechanisms of catalytic ozonation: An investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water. Appl. Catal. B- Environ. 129, 437-449.
[10] Wanga, J., Shia, X., Chen, L., Li, H., Mao, M., Zhang, G., Yi, H., Fu, M., Ye, D., & Wu, J. (2021). Enhanced performance of low Pt loading amount on Pt-CeO2 catalysts prepared by adsorption method for catalytic ozonation of toluene. Appl. Catal. A-Gen. 625, 118342-118352.
[11] Huang, R., Lan, B., Chen, Z., Yan, H., Zhang, Q., & Li, L. (2012). Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41. Chem. Eng. J. 180, 19-24.
[12] Lv, A., Hu, C., Nie, Y., & Qu J. (2012). Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl. Catal. B-Environ. 117, 246-252.
[13] Minghao, S., Biaobiao, D., Sheng, L., Huang, S., & Lei, S. (2012). Catalytic performance of layered double hydroxides Co-Mn-Al for ozonation of organic pollutants in water. Chin. J. Catal. 33(7-8) 1284-1289.
[14] Attia, L. A. (2021). Modified bentonite as adsorbent material for the removal of the basic dye methylene blue from aqueous solutions. J. Particle Sci. Technol. 7(1) 23-31.
[15] Mozayyeni. A., & Mahmoudi, J. (2020). Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation. J. Particle Sci. Technol. 6(1) 1-12.
[16] Muruganandham, M., & Wu, J. (2008). Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Appl. Catal. B- Environ. 80(1-2) 32-41.
[17] Tabatabaei, S. M, Mehrizad, A., & Gharbani, P. (2012). Nano-catalytic ozonation of 4-nitrochloro-benzene in aqueous solutions. E-J. Chem. 9(4) 1968-1975.
[18] Gharbani, P., Mehrizad, A. (2014). Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J. Saudi Chem. Soc. 18(5) 601-605.
[19] Jung, H., Park, H., Kim, J., Lee, J. -H., Hur, H. -G., Myung, N. V., & Choi, H. (2007). Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environ. Sci. Technol. 41(13) 4741-4747.
[20] Ovejero, G., Sotelo, J., Rodriguez, A., Diaz, C., Sanz, R., & Garcia, J. (2007). Platinum catalyst on multiwalled carbon nanotubes for the catalytic wet air oxidation of phenol. Ind. Eng. Chem. Res. 46(20) 6449-6455.
[21] Poznyak, T., Chairez, I., & Poznyak, A. (2018). State estimation of catalytic ozonation by differential neural networks with discontinuous learning law. FAC PapersOnLine, 51(13) 462-467.
[22] Orge, C. A., Órfão, J. J., Pereira, M. F., de Farias, A. M. D., Neto, R. C. R., & Fraga, M. A. (2011). Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl. Catal. B- Environ. 103(1-2) 190-199.
[23] Hewer, T. L., Soeira, L. S., Brito, G. E., Freire, & R. S. (2013). One-pot green synthesis of cerium oxide-carbon microspheres and their catalytic ozonation activity. J. Mater. Chem. A, 1, 6169-6174.
[24] Zhang, X., Li, X., & Qin, W. (2009). Investigation of the catalytic activity for ozonation on the surface of NiO nanoparticles. Chem. Phys. Lett. 479(4-6) 310-315.
[25] Sui, M., Xing, S., Sheng, L., Huang, S., & Guo H. (2012). Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard. Mater. 227-228, 227-236.
[26] Liu, Z. -Q., Ma, J., Cui, Y. -H., Zhao, L., & Zhang, B. -P. (2011). Factors affecting the catalytic activity of multi-walled carbon nanotube for ozonation of oxalic acid. Sep. Purif. Technol. 78(2) 147-153.
[27] Qin, W., Li, X., & Qi, J. (2009). Experimental and theoretical investigation of the catalytic ozonation on the surface of NiO–CuO nanoparticles. Langmuir, 25(14) 8001-8011.
[28] Cabrera, L., Gutierrez, S., Menendez, N., Morales, M., & Herrasti, P. (2008). Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta, 53(8) 3436-3441.
[29] Nemati, A., Shadpour, S., Khalafbeygi, H., & Barkhi, M. (2014). Hydrothermal synthesis and size control of Fe3O4 nanoparticles in the presence of 2, 2', 2", 2"'- (ethane-1,2-diylbis(azanetriyl))tetraaceto-hydrazide. Synth. React. Inorg. M. 44(8) 1161-1165.
[30] Amara, D., Felner, I., Nowik, I., . & Margel, S. (2009). Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloid. Surface A, 339(1-3) 106-110.
[31] Asuha, S., Suyala, B., Siqintana, X., & Zhao S. (2011). Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe–urea complex and its properties. J. Alloy. Compd. 509(6) 2870-2873.
[32] Davar, F., Salavati-Niasari, M., Mir, N., Saberyan, K., Monemzadeh, M., & Ahmadi, E. (2010). A novel chelating acid-assisted thermolysis procedure for preparation of tin oxide nanoparticles. Polyhedron, 29(16) 1747-1753.
[33] Liu, L., Yang, H., Wei, J., & Yang, Y. (2011). Controllable synthesis of monodisperse Mn3O4 and Mn2O3 nanostructures via a solvothermal route. Mater. Lett. 65(4) 694-697.
[34] Alaghmandfar, A., & Ghandi, K. (2022). A comprehensive review of graphitic carbon nitride (g-C3N4)–metal oxide-based nanocomposites: Potential for photocatalysis and sensing. Nanomaterials-Basel, 12(2) 294.
[35] Xing, S., Zhou, Z., Ma, Z., & Wu, Y. (2011). Facile synthesis and electrochemical properties of Mn3O4 nanoparticles with a large surface area. Mater. Lett. 65(3) 517-519.
[36] Li, J., Li, L., Wu, F., Zhang, L., & Liu, X. (2013).Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants. Catal. Commun. 31, 52-56.
[37] Askarinejad, A., & Morsali, A. (2009). Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem. 16(1) 124-131.
[38] Jiang, J., Du, K., Cao, Y., Peng, Z., Hu, G., & Duan, J. (2013). Synthesis of micro-spherical Mn3O4 by controlled crystallization method. Powder Technol. 246, 723-727.
[39] Ranjbar, M., Yousefi, M., Lahooti, M., Malekzadeh, A. (2012). Preparation and characterization of tetragonal zirconium oxide nanocrystals from isophthalic acid-zirconium (IV) nanocomposite as a new precursor. Int. J. Nanosci. Nanotechnol. 8(4) 191-196.
[40] Ranjbar, M., Mannan, S., Yousefi, M., & Shalmashi A. (2013). Yttria nanoparticles prepared from salicylic acid-Y (III) nanocomposite as a new precursor. Amer. Chem. Sci. J. 3, 1-10.
[41] Ranjbar M., & Yousefi M. (2014). Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nano-sized lanthanum(III) supramolecule as a novel precursor. J. Inorg. Organomet. Polym. 24, 652-655.
[42] Ranjbar, M., Shahsavan, N., Yousefi, M. (2012). Synthesis and characterization of nano-structured zinc(II) cysteine complex under ultrasound irradiation. Amer. Chem. Sci. J. 3, 111-121.
[43] Ranjbar, M., Çelik, Ö., Mahmoudi Najafi, S. H., Sheshmani, S., & Mobarakeh, N. A. (2012). Synthesis of lead(II) minoxidil coordination polymer : A new precursor for lead(II) oxide and lead(II) hydroxyl bromide. J. Inorg. Organomet. Polym. 22, 837-844.
[44] Rakness, K., Gordon, G., Langlais, B., Masschelein, W., Matsumoto, N., Richard, Y., Robson, C. M., & Somiya, I. (1996). Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone-Sci. Eng. 18, 209.
[45] Aghabozorg, H., Mohammd Panah, F., & Sadr-Khanlou, E. (2007). Crystal structure of [Fe(bpy)3][Fe(pydc)2]2(pydcH2)1/2·6.5H2O complex (bpy = 2 , 2′ -bipyridine, pydc = pyridine- 2 , 6 -dicarboxylate). Anal. Sci. 23, x139-x140.
[46] Luo, Y., Lu, Z., Jiang, Y., Wang, D., Yang, L., Huo, P., Da, Z., Bai, X., Xie, X., & Yang, P. (2014). Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2 / Fe3O4 / MWCNTs. Chem. Eng. J. 240, 244-252.
[47] Wu, J. (2008). Synthesis, characterization and crystal structure of a 3‐D supramolecular Cu/Mn complex with pydc. Cryst. Res. Technol. 43(10) 1097-1100.
[48] Xin, T., Ma, M., Zhang, H., Gu, J., Wang, S., Liu, M., & Zhang, Q. (2014). A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl. Surf. Sci. 288, 51-59.
[49] Jenkins, R., & Snyder, R. (1996). Introduction to X-ray Powder Diffractometry. in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, Vol. 138, John Wiley & Sons, Inc.
[50] Chen, F., Xie, S., Zhang, J., & Liu, R. (2013). Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent. Mater. Lett. 112, 177-179.
[51] Bayat, M., Ranjbar, M., & Shokrollahzadeh, S. (2018). Synthesis and characterization of Mn3O4 nanocatalysts for degradation of phenol. J. Iran. Chem. Chem. Eng. (Nashrie Shimi va Mohandesi Shimi Iran) 37(2), 13-20. (in Persian language).
[52] Silva, G. C., Ciminelli, V. S., Ferreira, A. M., Pissolati, N. C., Paiva, P. R. P, & López, J. L. (2014). A facile synthesis of Mn3O4 / Fe3O4 superparamagnetic nanocomposites by chemical precipitation: Characterization and application in dye degradation. Mater. Res. Bull. 49, 544-551.
[53] Muhammad, S., Wahyu Nugraha, M., Saputra, E., & Arahman, N. (2022). Mn3O4 Catalysts for advanced oxidation of phenolic contaminants in aqueous solutions. Water, 14(13) 2124.
[54] Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B-Environ. 99(1-2) 27-42.