Synthesizing Fe3O4, Mn3O4 and Mn3O4/Fe3O4 nanocatalysts using the sol-gel method as new precursors for the degradation of phenol by catalytic ozonation

Document Type : Research Article

Authors

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST)

Abstract

Ozone has received much attention in wastewater treatment as an impressive oxidation agent. In this work, three new metal complexes, [pyda.H][Fe(pydc)(pydc.H)].H2O, (I); [pyda.H][Fe(pydc)2].H2O, (II); and [pyda.H2]5[Mn(pydc.H)2].[pydc]5.8H2O, (III), where [pyda.H]+ = 2,6 -diaminopyridinium and [pydc]2- = 2,6 -pyridinedicarboxylate, have been synthesized by the ultrasonic-assisted synthesis method and then characterized by field emission scanning electron microscope (FE-SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA), and elemental analyses. According to the SEM image, the morphology of compound III was a nanorod. Compounds I, II, and III were then used as precursors for the preparation of Fe3O4, Mn3O4, and Mn3O4/Fe3O4 using the sol-gel and impregnation methods, respectively. Characterization of the synthesized nano-catalysts was carried out by FE-SEM, X-ray powder diffraction (XRD), and energy diffraction X-ray (EDX), the vibrating sample magnetometer (VSM) was replaced by magnetic studies. The VSM result showed that Fe3O4 and Mn3O4/Fe3O4 were superparamagnetic and ferromagnetic compounds, respectively. The Mn3O4, Mn3O4/Fe3O4, and Fe3O4 nanocatalysts were applied for the decomposition of phenol in an aqueous solution by catalytic ozonation. Phenol degradation efficiency was obtained as 97.26, 97.74, and 88.62 %, respectively.

Graphical Abstract

Synthesizing Fe3O4, Mn3O4 and Mn3O4/Fe3O4 nanocatalysts using the sol-gel method as new precursors for the degradation of phenol by catalytic ozonation

Highlights

  • New supramolecules of Fe(II), Fe(III) and Mn(II) with ligand LH2, [pyda.H2]2+[pydc]2-, (pyda = 2 , 6 -pyridinediamine and pydc.H2 = 2 , 6 -pyridinedicarboxylic acid) were prepared.
  • The supramolecules were used for the preparation of nanocatalysts Fe3O4, Mn3O4 and Mn3O4/Fe3O4.
  • The nanocatalysts were applied for degradation of phenol by ozonation.
  • The combined usage of O3 and Mn3O4, Mn3O4/Fe3O4, Fe3O4 nano-catalysts leads to a conspicuous Mn3O4 > Mn3O4/Fe3O4 > Fe3O4 for degradation and mineralization of phenol.

Keywords

Main Subjects


[1] Huang, X., Cui, W., Yu, J., Lu, S. & Liao, X. (2022). Preparation of mesoporous MnO2 catalysts with different Mmorphologies for catalytic ozonation of organic compounds. Catal. Lett. 152(5) 1441-1450.
[2] Keykavoos, R., Mankidy, R., Ma, H., Jones, P., & Soltan, J. (2013). Mineralization of bisphenol A by catalytic ozonation over alumina. Sep. Purif. Technol. 107, 310-317.
[3] Wang, Z., Wang, Z., Li, W., Lan, Y., & Chen, C. (2022). Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α, β, γ, and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation. Chem. Eng. J. 427, 130888.
[4] Yan, P., Ye, Y., & Wang, M. (2022). Catalytic ozonation of phenol by ZnFe2O4 / ZnNCN: performance and mechanism. Environ. Sci. Pollut. R. 29, 88172-88181
[5] Jans, U., & Hoigné, J. (1998). Activated carbon and carbon black catalyzed tansformation of aqueous ozone into OH-radicals. Ozone-Sci. Eng. 20(1) 67-90.
[6] Gül, Ş., Eren, O., Kır, Ş., & Önal, Y. (2012). A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye. Water Sci. Technol. 66(1) 179-184.
[7] Zhang, T., Li, W., & Croué, J. P. (2012). A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water. Appl. Catal. B- Environ. 121-122, 88-94.
[8] Hao, L., Huiping, D., & Jun, S. (2012). Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons. J.  Mol.Catal. A-Chem. 363-364, 101-107.
[9] Ikhlaq, A., Brown, D. R., & Kasprzyk-Hordern, B. (2013). Mechanisms of catalytic ozonation: An investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water. Appl. Catal. B- Environ. 129, 437-449.
[10] Wanga, J., Shia, X., Chen, L., Li, H., Mao, M., Zhang, G., Yi, H., Fu, M., Ye, D., & Wu, J. (2021). Enhanced performance of low Pt loading amount on Pt-CeO2 catalysts prepared by adsorption method for catalytic ozonation of toluene. Appl. Catal. A-Gen. 625, 118342-118352.
[11] Huang, R., Lan, B., Chen, Z., Yan, H., Zhang, Q., & Li, L. (2012). Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41. Chem. Eng. J. 180, 19-24.
[12] Lv, A., Hu, C., Nie, Y., & Qu J. (2012). Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl. Catal. B-Environ. 117, 246-252.
[13] Minghao, S., Biaobiao, D., Sheng, L., Huang, S., & Lei, S. (2012). Catalytic performance of layered double hydroxides Co-Mn-Al for ozonation of organic pollutants in water. Chin. J. Catal. 33(7-8) 1284-1289.
[14]  Attia, L. A. (2021). Modified bentonite as adsorbent material for the removal of the basic dye methylene blue from aqueous solutions. J. Particle Sci. Technol. 7(1) 23-31.
[15] Mozayyeni. A., & Mahmoudi, J. (2020). Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation. J. Particle Sci. Technol. 6(1) 1-12.
[16] Muruganandham, M., & Wu, J. (2008). Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Appl. Catal. B- Environ. 80(1-2) 32-41.
[17] Tabatabaei, S. M, Mehrizad, A., & Gharbani, P. (2012). Nano-catalytic ozonation of 4-nitrochloro-benzene in aqueous solutions. E-J. Chem. 9(4) 1968-1975.
[18] Gharbani, P., Mehrizad, A. (2014). Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J. Saudi Chem. Soc. 18(5) 601-605.
[19] Jung, H., Park, H., Kim, J., Lee, J. -H., Hur, H. -G., Myung, N. V., & Choi, H. (2007). Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environ. Sci. Technol. 41(13) 4741-4747.
[20] Ovejero, G., Sotelo, J., Rodriguez, A., Diaz, C., Sanz, R., & Garcia, J. (2007). Platinum catalyst on multiwalled carbon nanotubes for the catalytic wet air oxidation of phenol. Ind. Eng. Chem. Res. 46(20) 6449-6455.
[21] Poznyak, T., Chairez, I., & Poznyak, A. (2018). State estimation of catalytic ozonation by differential neural networks with discontinuous learning law. FAC PapersOnLine, 51(13) 462-467.
[22] Orge, C. A., Órfão, J. J., Pereira, M. F., de Farias, A. M. D., Neto, R. C. R., & Fraga, M. A. (2011). Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl. Catal. B- Environ. 103(1-2) 190-199.
[23] Hewer, T. L., Soeira, L. S., Brito, G. E., Freire, & R. S. (2013). One-pot green synthesis of cerium oxide-carbon microspheres and their catalytic ozonation activity. J. Mater. Chem. A, 1, 6169-6174.
[24] Zhang, X., Li, X., & Qin, W. (2009). Investigation of the catalytic activity for ozonation on the surface of NiO nanoparticles. Chem. Phys. Lett. 479(4-6) 310-315.
[25] Sui, M., Xing, S., Sheng, L., Huang, S., & Guo H. (2012). Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard. Mater. 227-228, 227-236.
[26] Liu, Z. -Q., Ma, J., Cui, Y. -H., Zhao, L., & Zhang, B. -P. (2011). Factors affecting the catalytic activity of multi-walled carbon nanotube for ozonation of oxalic acid. Sep. Purif. Technol. 78(2) 147-153.
[27] Qin, W., Li, X., & Qi, J. (2009). Experimental and theoretical investigation of the catalytic ozonation on the surface of NiO–CuO nanoparticles. Langmuir, 25(14) 8001-8011.
[28] Cabrera, L., Gutierrez, S., Menendez, N., Morales, M., & Herrasti, P. (2008). Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta, 53(8) 3436-3441.
[29] Nemati, A., Shadpour, S., Khalafbeygi, H., & Barkhi, M. (2014). Hydrothermal synthesis and size control of Fe3O4 nanoparticles in the presence of 2, 2', 2", 2"'- (ethane-1,2-diylbis(azanetriyl))tetraaceto-hydrazide. Synth. React. Inorg. M. 44(8) 1161-1165.
[30] Amara, D., Felner, I., Nowik, I., . & Margel, S. (2009). Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloid. Surface A, 339(1-3) 106-110.
[31] Asuha, S., Suyala, B., Siqintana, X., & Zhao S. (2011). Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe–urea complex and its properties. J. Alloy. Compd. 509(6) 2870-2873.
[32] Davar, F., Salavati-Niasari, M., Mir, N., Saberyan, K., Monemzadeh, M., & Ahmadi, E. (2010). A novel chelating acid-assisted thermolysis procedure for preparation of tin oxide nanoparticles. Polyhedron, 29(16) 1747-1753.
[33] Liu, L., Yang, H., Wei, J., & Yang, Y. (2011). Controllable synthesis of monodisperse Mn3O4 and Mn2O3 nanostructures via a solvothermal route. Mater. Lett. 65(4) 694-697.
[34] Alaghmandfar, A., & Ghandi, K. (2022). A comprehensive review of graphitic carbon nitride (g-C3N4)–metal oxide-based nanocomposites: Potential for photocatalysis and sensing. Nanomaterials-Basel, 12(2) 294.
[35] Xing, S., Zhou, Z., Ma, Z., & Wu, Y. (2011). Facile synthesis and electrochemical properties of Mn3O4 nanoparticles with a large surface area. Mater. Lett. 65(3) 517-519.
[36] Li, J., Li, L., Wu, F., Zhang, L., & Liu, X. (2013).Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants. Catal. Commun. 31, 52-56.
[37] Askarinejad, A., & Morsali, A. (2009). Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem. 16(1) 124-131.
[38] Jiang, J., Du, K., Cao, Y., Peng, Z., Hu, G., & Duan, J. (2013). Synthesis of micro-spherical Mn3O4 by controlled crystallization method. Powder Technol. 246, 723-727.
[39] Ranjbar, M., Yousefi, M., Lahooti, M., Malekzadeh, A. (2012). Preparation and characterization of tetragonal zirconium oxide nanocrystals from isophthalic acid-zirconium (IV) nanocomposite as a new precursor. Int. J. Nanosci. Nanotechnol. 8(4) 191-196.
[40] Ranjbar, M., Mannan, S., Yousefi, M., & Shalmashi A. (2013). Yttria nanoparticles prepared from salicylic acid-Y (III) nanocomposite as a new precursor. Amer. Chem. Sci. J. 3, 1-10.
[41] Ranjbar M., & Yousefi M. (2014). Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nano-sized lanthanum(III) supramolecule as a novel precursor. J. Inorg. Organomet. Polym. 24, 652-655.
[42] Ranjbar, M., Shahsavan, N., Yousefi, M. (2012). Synthesis and characterization of nano-structured zinc(II) cysteine complex under ultrasound irradiation. Amer. Chem. Sci. J. 3, 111-121.
[43] Ranjbar, M., Çelik, Ö., Mahmoudi Najafi, S. H., Sheshmani, S., & Mobarakeh, N. A. (2012). Synthesis  of  lead(II) minoxidil coordination polymer : A new precursor for lead(II) oxide and lead(II) hydroxyl bromide. J. Inorg. Organomet. Polym. 22, 837-844.
[44] Rakness, K., Gordon, G., Langlais, B., Masschelein, W., Matsumoto, N., Richard, Y., Robson, C. M., & Somiya, I. (1996). Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone-Sci. Eng. 18, 209.
[45] Aghabozorg, H., Mohammd Panah, F., & Sadr-Khanlou, E. (2007). Crystal structure of [Fe(bpy)3][Fe(pydc)2]2(pydcH2)1/2·6.5H2O complex  (bpy = 2 , 2′ -bipyridine, pydc = pyridine- 2 , 6 -dicarboxylate). Anal. Sci. 23, x139-x140.
[46] Luo, Y., Lu, Z., Jiang, Y., Wang, D., Yang, L., Huo, P., Da, Z., Bai, X., Xie, X., & Yang, P. (2014). Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2 / Fe3O4 / MWCNTs. Chem. Eng. J. 240, 244-252.
[47] Wu, J. (2008). Synthesis, characterization and crystal structure of a 3‐D supramolecular Cu/Mn complex with pydc. Cryst. Res. Technol. 43(10) 1097-1100.
[48] Xin, T., Ma, M., Zhang, H., Gu, J., Wang, S., Liu, M., & Zhang, Q. (2014). A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl. Surf. Sci. 288, 51-59.
[49] Jenkins, R., & Snyder, R. (1996). Introduction to X-ray Powder Diffractometry. in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, Vol. 138, John Wiley & Sons, Inc.
[50] Chen, F., Xie, S., Zhang, J., & Liu, R. (2013). Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent. Mater. Lett. 112, 177-179.
[51] Bayat, M., Ranjbar, M., & Shokrollahzadeh, S. (2018). Synthesis and characterization of Mn3O4 nanocatalysts for degradation of phenol. J. Iran. Chem. Chem. Eng. (Nashrie Shimi va Mohandesi Shimi Iran) 37(2), 13-20. (in Persian language).
[52] Silva, G. C., Ciminelli, V. S., Ferreira, A. M., Pissolati, N. C., Paiva, P. R. P, & López, J. L. (2014). A facile synthesis of Mn3O4 / Fe3O4 superparamagnetic nanocomposites by chemical precipitation: Characterization and application in dye degradation. Mater. Res. Bull. 49, 544-551.
[53] Muhammad, S., Wahyu Nugraha, M., Saputra, E., & Arahman, N. (2022). Mn3O4 Catalysts for advanced oxidation of phenolic contaminants in aqueous solutions. Water, 14(13) 2124. 
[54] Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B-Environ. 99(1-2) 27-42.