[1] Charalabidis, A., Sfouni, M., Bergström, C., & Macheras, P. (2019). The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond Guidelines. Int. J. Pharm. 566, 264-281.
[2] Tran, P., & Park, J.S. (2021). Recent Trends of Self-Emulsifying Drug Delivery System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. J. Pharm. Investig. 51, 439-463.
[3] Khan, K.U., Minhas, M.U., Badshah, S.F., Suhail, M., Ahmad, A. & Ijaz, S. (2022). Overview of Nanoparticulate Strategies for Solubility Enhancement of Poorly Soluble Drugs. Life Sci. 291, 120301.
[4] Kesisoglou, F., & Wu, Y. (2008). Understanding the Effect of API Properties on Bioavailability Through Absorption Modeling, AAPS J. 10(4) 516-525.
[5] Arnold, S.L.M. & Isoherranen, N. (2022). Role of Pharmacokinetics and Pharmacokinetic Modeling in Drug Development. in T. kenakin (Ed.), Comprehensive Pharmacology (pp. 743-768). Elsevier.
[6] Kim, D.H., Kim, Y.W., Tin, Y.Y., Soe, M.T.P., Ko, B.H., Park, S.J., & Lee, J.W. (2021). Recent Technologies for Amorphization of Poorly Water-Soluble Drugs. Pharmaceutics, 13(8) 1318.
[7] Tran, P., Pyo, Y.C., Kim, D.H., Lee, S.E., Kim, J.K., & Park, J.S. (2019). Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics, 11(3) 132.
[8] Loh, Z.H., Samanta, A.K., Heng, P.W.S. (2015). Overview of Milling Techniques for Improving the Solubility of Poorly Water-Soluble Drugs. Asian J. Pharm. Sci. 10(4) 255-274.
[9] Williams, H.D., Trevaskis, N.L., Charman, S.A., Shanker, R.M., Charman, W.N., Pouton, C.W., & Porter, C.J.H. (2013). Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 65(1) 315-499.
[10] Savjani, K.T., Gajjar, A.K., & Savjani, J.K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 195727.
[11] Abuzar, S.M., Hyun, S.M., Kim, J.H., Park, H.J., Kim, M.S., Park, J.S., & Hwang, S.J. (2018). Enhancing the Solubility and Bioavailability of Poorly Water-Soluble Drugs Using Supercritical Antisolvent (SAS) Process. Int. J. Pharm. 538, 1-13.
[12] Kim, S., Bilgili, E., & Davé, R.N. (2021). Impact of Altered Hydrophobicity and Reduced Agglomeration on Dissolution of Micronized Poorly Water-Soluble Drug Powders After Dry Coating. Int. J. Pharm. 606, 120853.
[13] Yadav, K., Sachan, A.K., Kumar, S., & Dubey, A. (2022). Techniques for Increasing Solubility: A Review of Conventional and New Strategies. Asian J. Pharm. Res. Dev. 10(2) 144-153.
[14] Cun, D., Zhang, C., Bera, H., & Yang, M. (2021). Particle Engineering Principles and Technologies for Pharmaceutical Biologics. Adv. Drug Deliver. Rev. 174, 140-167.
[15] Hanafy, A., Spahn-Langguth, H., Vergnault, G., Grenier, P., Tubic Grozdanis, M., Lenhardt, T., & Langguth, P. (2007). Pharmacokinetic Evaluation of Oral Fenofibrate Nanosuspensions and SLN in Comparison to Conventional Suspensions of Micronized Drug. Adv. Drug Deliver. Rev. 59(6) 419-426.
[16] Kim, J.S., Park, H., Kang, K.T., Ha, E.S., Kim, M.S., & Hwang, S.J. (2022). Micronization of a Poorly Water-Soluble Drug, Fenofibrate, via Supercritical-Fluid-Assisted Spray-Drying. J. Pharm. Investig. 52, 353-366.
[17] Arms, L., Smith, D.W., Flynn, J., Palmer, W., Martin, A., Woldu, A., & Hua, S. (2018). Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front. Pharmacol. 9, 802.
[18] Heng, D., Ogawa, K., Cutler, D.J., Chan, H.K. Raper, J.A., Ye, L., & Yun, J. (2010). Pure Drug Nanoparticles in Tablets: What Are the Dissolution Limitations?. J. Nanopart. Res. 12, 1743-1754.
[19] De Jong, W.H., & Borm, P.J.A. (2008). Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 3(2) 133-149.
[20] Brunaugh, A., Smyth, H.D.C. (2017). Process Optimization and Particle Engineering of Micronized Drug Powders via Milling. Drug Deliv. Transl. Re. 8(6) 1740-1750.
[21] Rasenack, N., & Müller, B.W. (2004). Micron‐Size Drug Particles: Common and Novel Micronization Techniques. Pharm. Dev. Technol. 9(1) 1-13.
[22] Vandana, K.R., Prasanna Raju, Y., Harini Chowdary, V., Sushma, M., & Vijay Kumar, N. (2014). An Overview on in Situ Micronization Technique - An Emerging Novel Concept in Advanced Drug Delivery. Saudi Pharm. J. 22(4) 283-289.
[23] Janiszewska-Turak, E. (2017). Carotenoids Microencapsulation by Spray Drying Method and Supercritical Micronization. Food Res. Int. 99 (part 2) 891-901.
[24] Dobrowolski, A, Strob, R, Dräger-Gillessen, J.F., Pieloth, D., Schaldach, G., Wiggers, H., & Thommes, M. (2019). Preparation of Submicron Drug Particles via Spray Drying from Oganic Solvents. Int. J. Pharm. 567, 118501.
[25] Aguiar-Ricardo, A. (2017). Building Dry Powder Formulations Using Supercritical CO2 Spray Drying. Curr. Opin. Green Sust. Chem. 5, 12-16.
[26] Knez, Ž., Pantić, M., Cör, D., Novak, Z., & Hrnčič, M.K. (2019). Are Supercritical Fluids Solvents for the Future?. Chem. Eng. Process. 141, 107532.
[27] Soh, S.H., & Lee, L.Y. (2019). Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics, 11(1) 21.
[28] Zhou, X., Zhu, X., Wang, B., Li, J., Liu, Q., Gao, X., Sirkar, K.K., & Chen, D., Continuous Production of Drug Nanocrystals by Porous Hollow Fiber-Based Anti-Solvent Crystallization. J. Membrane Sci. 564, 682-690.
[29] Maghsoodi, M., Montazam, S.H., Rezvantalab, H., & Jelvehgari, M. (2020). Response Surface Methodology for Optimization of Process Variables of Atorvastatin Suspension Preparation by Microprecipitation Method Using Desirability Function. Pharm. Sci. 26(1) 61-74.
[30] Enteshari, S. & Varshosaz, J. (2018). Solubility Enhancement of Domperidone by Solvent Change in Situ Micronization Technique. Adv. Biomed. Res. 7, 109.
[31] Rasenack, N., & Müller, B.W. (2002). Dissolution Rate Enhancement by in Situ Micronization of Poorly Water-Soluble Drugs. Pharm. Res. 19(12) 1894-1900.
[32] Bahr, M.N., Angamuthu, M., Leonhardt, S., Campbell, G., & Neau, S.H. (2021). Rapid Screening Approaches for Solubility Enhancement, Precipitation Inhibition and Dissociation of a Co-Crystal Drug Substance Using High Throughput Experimentation. J. Drug Deliv. Sci. Tech. 61, 102196.
[33] Ala’A, D.N., & Al-Khedairy, E.B.H. (2019). Formulation and Evaluation of Silymarin Microcrystals by in Situ Micronization Technique. Iraqi J. Pharm. Sci. 28(1) 1-16.
[34] Boonkanokwong, V., Khinast, J.G., & Glasser, B.J. (2021). Scale-up and Flow Behavior of Cohesive Granular Material in a Four-Bladed Mixer: Effect of System and Particle Size. Adv. Powder Technol. 32(12) 4481-4495.
[35] Csiszar, E., Szabo, Z., Balogh, O., Fekete, E., & Koczka, K. (2021). The Role of the Particle Size Reduction and Morphological Changes of Solid Substrate in the Ultrasound-Aded Enzymatic Hydrolysis of Cellulose. Ultrason. Sonochem. 78, 105711.
[36] Hussain, Z., & Sahudin, S. (2016). Preparation, Characterisation and Colloidal Stability of Chitosan - Tripolyphosphate Nanoparticles: Optimisation of Formulation and Process Parameters. Int. J. Pharm. Pharm. Sci. 8(3) 297-308.
[37] Sigwadi, R., Dhlamini, S., Mokrani, T. , & Nonjola, P. (2017). Effect of Synthesis Temperature on Particles Size and Morphology of Zirconium Oxide Nanoparticle. J. Nano Res. 50, 18-31.
[38] Hassanzadeh, B. & Mohanazadeh, F. (2017). A New Method for the Preparation of Pure Topiramate with a Micron Particle Size. J. Particle Sci. Technol. 3(3) 169-174.
[39] Rasenack, N., Steckel, H., & Müller, B.W. (2004). Preparation of Microcrystals by in Situ Micronization. Powder Technol. 143-144, 291-296.
[40] Acamprosate calcium, retrieved June 24, 2022 from https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4310705.htm.
[41] Acamprosate calcium, retrieved June 24, 2022 from https://go.drugbank.com/salts/DBSALT000002.
[42] Mason, B., Heyser, C. (2010). Acamprosate: A Prototypic Neuromodulator in the Treatment of Alcohol Dependence. CNS Neurol. Disord. - Dr. 9(1) 23-32.
[43] Plosker, G.L. (2015). Acamprosate: A Review of Its Use in Alcohol Dependence. Drugs, 75(11) 1255-1268.
[44] FDA Approves New Drug for Treatment of Alcoholism, FDA Talk Paper, Food and Drug Administration. 2004-07-29. Archived from the original on 2008-01-17. Retrieved August 15, 2009 from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-431_Campral.cfm.
[45] Chuacharoen, T., Prasongsuk, S., & Sabliov, C.M. (2019). Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules, 24(15) 2744.
[46] Wang, C., Cui, B., Guo, L., Wang, A., Zhao, X., Wang, Y., Sun, C., Zeng, Z., Zhi, H., Chen, H., Liu, G, & Cui, H. (2019). Fabrication and Evaluation of Lambda-Cyhalothrin Nanosuspension by One-Step Melt Emulsification Technique. Nanomaterials-Basel, 9(2) 145.
[47] Kirankumar, A., Mamatha, B., Sasikala, M., Monika, S., Ranganayakulu, D. (2013). Validated UV Spectrophotometric Method Development AndStability Studies of Acamprosate Calcium in Bulk and Tablet Dosage Form, Int. J. PharmTech Res. 5(3) 1241-1246.