[1] H. Mollabagher, S. Taheri, M. Majid Mojtahedi, S. Seyedmousavi, Cu-metal organic frameworks (Cu-MOF) as an environment-friendly and economical catalyst for one pot synthesis of tacrine derivatives, RSC Adv. 10 (2020) 1995-2003.
[2] H. Mollabagher, S. Taheri, An efficient method for the synthesis of neuroprotective drug riluzole, 20th Iranian chemical congress, Iran, 2018.
[3] G. Mohammadi Ziarani, H. Mollabagher, N. Lashgari, A. Badiei, One-pot solvent-free synthesis of pyranonaphthoquinone-fused spirooxindoles catalyzed by SBA-IL, Sci. Iran. 25 (2018) 3295-304.
[4] G. Mohammadi Ziarani, H. Mollabagher, P. Gholamzadeh, A. Badiei, F. Yazdian, Synthesis of the biologically active henna based benzochromene derivatives using ionic liquid functionalized SBA-15 as a nanoreactor, Iranian J. Catal. 8 (2018 ) 59-67.
[5] S.Y. Afsar, G.M. Ziarani, H. Mollabagher, P. Gholamzadeh, A. Badiei, A.A. Soorki, Application of SBA-Pr-SO3H in the synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones: Characterization, UV–Vis investigations and DFT studies, J. Iranian Chem. Soc. 14 (2017) 577-583.
[6] T. Ahmadi, G.M. Ziarani, P. Gholamzadeh, H. Mollabagher, Recent advances in asymmetric multicomponent reactions (AMCRs), Tetrahedron-Asymmetry, 28 (2017) 708-724.
[7] D. Al-Badriyeh, C.F. Neoh, K. Stewart, D.C. Kong, Clinical utility of voriconazole eye drops in ophthalmic fungal keratitis, Clinical Ophthalmology (Auckland, NZ) 4 (2010) 391-405.
[8] S. Hariprasad, W. Mieler,T. Lin, W. Sponsel, J. Graybill, Voriconazole in the treatment of fungal eye infections: a review of current literature, Brit. J. Ophthalmol. 92 (2008) 871-878.
[9] U.V. Jurkunas, D.P. Langston, K. Colby, Use of voriconazole in the treatment of fungal keratitis, Int. Ophthalmol. Clin. 47 (2007) 47-59.
[10] K. Khoshnevisan, H. Maleki, H. Samadian, S. Shahsavari, M.H. Sarrafzadeh, B. Larijani, et al., Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances, Carbohyd. Polym. 198 (2018) 131-141.
[11] S. Shahsavari, L.R. Shirmard, M. Amini, F.A. Dokoosh, Application of artificial neural networks in the design and optimization of a nanoparticulate fingolimod delivery system based on biodegradable Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate), J. Pharm. Sci. 106 (2017) 176-182.
[12] S. Seifirad, H. Karami, S. Shahsavari, F. Mirabasi, F. Dorkoosh, Design and characterization of mesalamine loaded nanoparticles for controlled delivery system, Nanomed. Res. J. 1 (2016) 97-106.
[13] S. Shahsavari, E. Vasheghani-Farahani, M. Ardjmand, F. Abedin Dorkoosh, Modeling of drug released from acyclovir nanoparticles based on artificial neural networks, Lett. Drug Des. Discov. 11 (2014) 174-183.
[14] S. Shahsavari, E. Vasheghani-Farahani, M. Ardjmand, F. Abedin Dorkoosh, Design and characterization of acyclovir loaded nanoparticles for controlled delivery system, Curr. Nanosci. 10 (2014) 521-531.
[15] S. Shahsavari, G. Bagheri, R. Mahjub, R. Bagheri, M. Radmehr, M. Rafiee-Tehrani, et al., Application of artificial neural networks for optimization of preparation of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan, Drug Res. 64 (2014) 151-158.
[16] A.J. Ullmann, Review of the safety, tolerability, and drug interactions of the new antifungal agents caspofungin and voriconazole, Curr. Med. Res. Opin. 19 (2003) 263-271.
[17] A. Stewart, R. Powles, M. Hewetson, J. Antrum, C. Richardson, J. Mehta, Costs of antifungal prophylaxis after bone marrow transplantation, Pharmacoeconomics, 8 (1995) 350-361.
[18] W. Sponsel, N. Chen, D. Dang, G. Paris, J. Graybill, L.K. Najvar, et al., Topical voriconazole as a novel treatment for fungal keratitis, Antimicrob. Agents Ch. 50 (2006) 262-268.
[19] A.B. Clode, J.L. Davis, J. Salmon, T.M. Michau, B.C. Gilger, Evaluation of concentration of voriconazole in aqueous humor after topical and oral administration in horses, Am. J. Vet. Res. 67 (2006) 296-301.
[20] D. Lau, M. Fedinands, L. Leung, R. Fullinfaw, D. Kong, G. Davies, et al., Penetration of voriconazole, 1%, eyedrops into human aqueous humor: a prospective open-label study, Arch. Ophthalmol.-Chic 126 (2008) 343-346.
[21] G.A. Vemulakonda, S.M. Hariprasad, W.F. Mieler, R.A. Prince, G.K. Shah, R.N. Van Gelder, Aqueous and vitreous concentrations following topical administration of 1% voriconazole in humans, Arch. Ophthalmol.-Chic 126 (2008) 18-22.
[22] N. Sharma, P. Agarwal, R. Sinha, J.S. Titiyal, T. Velpandian, R.B. Vajpayee, Evaluation of intrastromal voriconazole injection in recalcitrant deep fungal keratitis: case series, Brit. J. Ophthalmol. 95 (2011) 1735-1737.
[23] K.H. Kim, M.J. Kim, H. Tchah, Management of fungal ocular infection with topical and intracameral voriconazole, J. Korean Ophthalmol. Soc. 49 (2008) 1054-1060.
[24] S. Malhotra, A. Khare, K. Grover, I. Singh, P. Pawar, Design and evaluation of voriconazole eye drops for the treatment of fungal keratitis, J. Pharm. (Cairo) 2014 (2014) 490595.
[25] W. Xiang-Gen, Y. Li-Na, X. Meng, J. Hao-Ran, Anti-infectious activity of intravitreal injectable voriconazole microspheres on experimental rabbit fungal endophthalmitis caused by Aspergillus fumigatus, J. Pharm. Sci. 100 (2011) 1745-1759.
[26] R. Kumar, V. Sinha, Preparation and optimization of voriconazole microemulsion for ocular delivery, Colloid. Surface. B, 117 (2014) 82-88.
[27] R. Kumar, V. Sinha, Fabrication of voriconazole solid lipid nanoparticles for effective ocular delivery, Value Health, 17 (2014) A613.
[28] H. Peng, X. Liu, G. Lv, B. Sun, Q. Kong, D. Zhai, Q. Wang, W. Zhao, G. wang et al., Voriconazole into PLGA nanoparticles: Improving agglomeration and antifungal efficacy, Int. J. Pharm. 352 (2008) 29-35.
[29] P. Pawar, H. Kashyap, S. Malhotra, R. Sindhu, Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment, Biomed. Res. Int. 2013 (2013) 341218.
[30] A.J. Wagstaff, D. Faulds, K.L.Goa, Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy, Drugs, 47 (1994) 153-205.
[31] P. Calvo, C. Remuñan-López, J.L. Vila-Jato, M.J. Alonso, Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines, Pharm. Res. 14 (1997) 1431-1436.
[32] Ü. Açıkel, M. Erşan, Y.S. Açıkel, Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar, Food Bioprod. Process. 88 (2010) 31-39.