[1] L. Liu, Z.Y. Gao, X.P. Su, X. Chen, L. Jiang, J.M. Yao, Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent, ACS Sustain. Chem. Eng. 3 (2015) 432-442.
[2] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technol. 77 (2001) 247-255.
[3] K. Sinha, P.D. Saha, S. Datta, Extraction of natural dye from petals of Flame of forest (Butea monosperma) flower: Process optimization using response surface methodology (RSM), Dyes Pigments, 94 (2012) 212-216.
[4] V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, Nanocomposite pectin Zr (IV) selenotungsto-phosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system, J. Ind. Eng. Chem. 21 (2015) 957-964.
[5] A. Rakhshani Aval, M. Rahmani, E. Ghasemi, Development and optimization of chemometric assisted micro-cloud point extraction for preconcentration and separation of Eriochrome black T in water and wastewater samples, Desalin. Water Treat. 120 (2018) 173-179.
[6] J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater. 164 (2009) 1517-1522.
[7] I.N. Savina, C.J. English, R.L. Whitby, Y. Zheng, A. Leistner, S.V. Mikhalovsky, High efficiency removal of dissolved As (III) using iron nanoparticle-embedded macroporous polymer composites, J. Hazard. Mater. 192 (2011) 1002-1008.
[8] S. Hasani, F.D. Ardejani, M.E. Olya, Equilibrium and kinetic studies of azo dye (Basic Red 18) adsorption onto montmorillonite: Numerical simulation and laboratory experiments, Korean J. Chem. Eng. 34 (2017) 2265-2274.
[9] G. Bayramoglu, M.Y. Arica, Adsorption of Congo Red dye by native amine and carboxyl modified biomass of Funalia trogii: isotherms, kinetics and thermodynamics mechanisms, Korean J. Chem. Eng. 35 (2018) 1303-1311.
[10] Z. Jiahua, W. Suying, G. Hongbo, One-pot synthesis of mgnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal, Environ. Sci. Technol. 46 (2012) 977-985.
[11] R. Kaur, A. Hasan, N. Iqbal, S. Alam, M.K. Saini, S.K. Raza, Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review, J. Sep. Sci. 37 (2014) 1805-1825.
[12] N.N. Nassar, N.N. Marei, Vitale G., L.A. Arar, Adsorptive removal of dyes from synthetic and real textile wastewater using magnetic iron oxide nanoparticles: Thermodynamic and mechanistic insights, Can. J. Chem. Eng. 93 (2015) 1965-1974.
[13] N.S. Mishra, A. Kuila, A. Nawaz, S. Pichiah, K.H. Leong, M. Jang, Engineered carbon nanotubes: Review on the role of surface chemistry, mechanistic features, and toxicology in the adsorptive removal of aquatic pollutants, ChemistrySelect, 3 (2018) 1040-1055.
[14] I.D. Mall, V.C. Srivastava, N.K. Agarwal, Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses, Dyes Pigments, 69 (2006) 210-223.
[15] S.M. Musyoka, H. Mittal, S.B. Mishra, J.C. Ngila, Effect of functionalization on the adsorption capacity of cellulose for the removal of methyl violet, Int. J. Biol. Macromol. 65 (2014) 389-397.
[16] F. Keyhanian, S. Shariati, M. Faraji, M. Hesabi, Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions, Arab. J. Chem. 9 (2016) 348-354.
[17] J. Tang, L. Zong, B. Mu, Y. Zhu, A. Wang, Preparation and cyclic utilization assessment of palygorskite/carbon composites for sustainable efficient removal of methyl violet, Appl. Clay Sci. 161 (2018) 317-325.
[18] T. Jiang, Y.D. Liang, Y.J. He, Q. Wang, Activated carbon/NiFe2O4 magnetic composite: A magnetic adsorbent for the adsorption of methyl orange, J. Environ. Chem. Eng. 3 (2015) 1740-1751.
[19] M.J. Livani, M. Ghorbani, Fabrication of NiFe2O4 magnetic nanoparticles loaded on activated carbon as novel nanoadsorbent for Direct Red 31 and Direct Blue 78 adsorption, Environ. Technol. 39 (2018) 2977-2993.
[20] A. Homayonfard, M. Miralinaghi, R. Haji Seyed Mohammad Shirazi, E. Moniri, Removal of Cd (II) Ion from aqueous solution using nickel ferrite magnetic nanoparticles cross-linked chitosan, J. Water Wastewater, 31 (2020) 112-127
[21] C. Chatfield, Introduction to Multivariate Analysis, Routledge, 2018.
[22] J. Hernández-Borges, M.A. Rodríguez-Delgado, F.J. Garcia-Montelongo, Optimization of the microwave-assisted saponification and extraction of organic pollutants from marine biota using experimental design and artificial neural networks, Chromatographia, 63 (2006) 155-160.
[23] I.H. Cho, K.D. Zoh, Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes Pigments, 75 (2007) 533-543.
[24] J.P. Coutinho, G.F. Barbero, O.F. Avellán, A. Garcés-Claver, H.T. Godoy, M. Palma, C.G. Barroso, Use of multivariate statistical techniques to optimize the separation of 17 capsinoids by ultra performance liquid chromatography using different columns, Talanta, 134 (2015) 256-263.
[25] N. Khan, T.G. Kazi, M. Tuzen, M. Soylak, A multivariate study of solid phase extraction of beryllium (II) using human hair as adsorbent prior to its spectrophotometric detection, Desalin. Water Treat. 55 (2015) 1088-1095.
[26] K. Vivek, K.V. Subbarao, B. Srivastava, Optimization of postharvest ultrasonic treatment of kiwifruit using RSM, Ultrason. Sonochem. 32 (2016) 328-335.
[27] E. Ahmadloo, S. Azizi, Prediction of thermal conductivity of various nanofluids using artificial neural network, Int. Commun. Heat Mass, 74 (2016) 69-75.
[28] S.A. Hosseini, M. Davodian, A.R. Abbasian, Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides, J. Taiwan Inst. Chem. E. 75 (2017) 97-104.
[29] M. Rahmani, E. Ghasemi, M. Sasani, Application of response surface methodology for air assisted-dispersive liquid-liquid microextraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup, Talanta, 165 (2017) 27-32.
[30] V. Vatanpour, A. Karami, M. Sheydaei, Central composite design optimization of Rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor, Chem. Eng. Process. 116 (2017) 68-75.
[31] P. Davoodi, S.M. Ghoreishi, A. Hedayati, Optimization of supercritical extraction of galegine from Galega officinalis L.: Neural network modeling and experimental optimization via response surface methodology, Korean J. Chem. Eng. 34 (2017) 854-865.
[32] X. Zheng, W. Zheng, J. Zhou, X. Gao, Z. Liu, N. Han, J. Yin, Study on the discrimination between Corydalis Rhizoma and its adulterants based on HPLC-DAD-Q-TOF-MS associated with chemometric analysis, J. Chromatogr. B, 1090 (2018) 110-121.
[33] A.R. Abbasian, M. Shafiee Afarani, One‑step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe1.6O4 nanoparticles, Appl. Phys. A, 125 (2019) 721.
[34] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965-977.
[35] F. Diejing, B. Bo, W. Honglun, S. Yourui, Novel fabrication of PAA/PVA/yeast superabsorbent with interpenetrating polymer network for pH-dependent selective adsorption of dyes, J. Polym. Environ. 26 (2018) 567-588.
[36] M. Rahmani, M. Kaykhaii, M. Sasani, Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples, Spectrochim. Acta A, 188 (2018) 164-169.