[1] S.M.J. Zeidi, M. Mahdi, Evaluation of the physical forces exerted on a spherical bubble inside the nozzle in a cavitating flow with an Eulerian/Lagrangian approach, Eur. J. of Phys. 136 (2015) 065041.
[2] D. Schmidt, M. Corradini, The internal flow of diesel fuel injector nozzles: A review, Int. J. Engine Res. 2 (2001) 1-22.
[3] S. Malavasi, V.M. Gianandrea, Dissipation and cavitation characteristics of single-hole orifices, J. Fluids Eng. 133 (2011) 051302.
[4] D.P. Schmidt1, Cavitation in diesel fuel injector nozzles, PhD thesis, University of Wisconsin Madison, 1997.
[5] M. Altimira, L. Fuchs, Numerical investigation of throttle flow under cavitating conditions, Int. J. Multiphas. Flow, 75 (2015) 124-136.
[6] A. Sou, B. Bicer, A. Tomiyama, Numerical simulation of incipient cavitation flow in a nozzle of fuel injector, Comput. Fluids, 103 (2014) 42-48.
[7] Q. Xue, M. Battistoni, C.F. Powell, D.E. Longman, S.P. Quan, E. Pomraning, P.K. Senecal, P.D. Schmid, S. Som, An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines, Intl. J. Multiphas. Flow, 70 (2015) 77-88.
[8] F.J. Salvador, M. Carreres, D. Jaramillo, J. Martínez-López, Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics, Energ. Convers. Manage. 103 (2015) 284-299.
[9] T. Chien-Chou, W. Li-Jie, Investigations of empirical coefficients of cavitation and turbulence model through steady and unsteady turbulent cavitating flows, Comput. Fluids, 103 (2014) 262-274.
[10] D.P. Schmidt, Theoretical analysis for achieving high-order spatial accuracy in Lagrangian/Eulerian source terms, Int. J. Numer. Meth. Fl. 52 (2006) 843-865.
[11] R.S. Meyer, M.L. Billet, J.W. Holl, Freestream nuclei and traveling-bubble cavitation, J. Fluid. Eng. 114 (1992) 672-679.
[12] G.L. Chahine, Numerical Simulation of Cavitation Dynamics, Dynaflow, Inc., Maryland, USA, 1997.
[13] K.J. Farrell, Eulerian/Lagrangian analysis for the prediction of cavitation inception, J. Fluid. Eng. 125 (2003) 46-52.
[14] C.F. Delale, Steady–state cavitating nozzle flows with nucleation, Fifth International Symposium on Cavitation, Osaka, Japan, 2003.
[15] X. Zhang, G. Ahmadi, Euleria-Lagraungian simulations of liquid-gas-solid flows in three-phase slurry reactors, Chem. Eng. Sci. 60 (2005) 5091-5106.
[16] M. Mahdi, M. Shams, R. Ebrahimi, Numerical simulation of scaling effect on bubble dynamic in turbulent flow around hydrofoil, J. Aerospace Sci. Tech. 3 (2006) 67-75.
[17] E. Giannadakis, M. Gavaises, C. Arcoumanis, Modelling of cavitation in diesel injector nozzles, J. Fluid Mech. 616 (2008) 153-193.
[18] N. Ochia, Y. Iga, M. Nohmi, T. Ikohagi, Study of quantitative numerical prediction of cavitation erosion in cavitating flow, J. Fluid Eng. 135 (2013) 011302.
[19] B. Wolfrum, Cavitation and shock wave effects on biological systems, PhD thesis, UniversitÄat zu GÄottingen, 2004.
[20] M. Mahdi, M. Shams, R. Ebrahimi, Effects of heat transfer on the strength of shock waves emitted upon spherical bubble collapse, Int. J. Numer. Method H. 20 (2009) 372-391.
[21] B.F. Launder, G.J. Reece, Progress in the development of a Reynolds stress turbulent cosure, J. Fluid Mech. 68 (1975) 537-566.
[22] M. Shams, G. Ahmadi, Computational modeling of flow and sediment transport and deposition in meandering rivers, Adv. Water Resour. 25 (2002) 689-699.
[23] B.J. Daly, F.H. Harlow, Transport equation in turbulence, Aerosol Sci. Tech. 11 (1970) 133-143.
[24] R. Lofstedt, B.P. Burber, S.J. Putterman, Toward a hydrodynamic theory of sonoluminescence, Phys. Fluids, 5 (1993) 2911.
[25] C.T. Hsiao, G. Chorine, Prediction of vortex cavitation inception using coupled spherical non-spherical models and UnRANS computations, 24th Symposium on Naval Hydrodynamics, Fukooka, Japan, 2002.
[26] M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26 (1983) 883-889.
[27] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid Eng. 124 (2002) 617-624.
[28] F.R. Gilmore, Hydrodynamic Laboratory Report 26.4, California Institute of Technology, Pasadena, CA, 1956.
[29] E. Winklhofer, E. Kull, E. Kelz, A. Morozov, Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions, Proc. of the ILASS-Europe Conference, Zurich, 2001.
[30] S.M.J. Zeidi, M. Mahdi, Investigation effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow, J. Appl. Comput. Mech. 2 (2015) 83-94.
[31] S.M.J. Zeidi, M. Mahdi, Effects of nozzle geometry and fuel characteristics on cavitation phenomena in injection nozzles, The 22nd Annual International Conference on Mechanical Engineering-ISME2014, Tehran, Iran, 2014.
[32] S.M.J. Zeidi, M. Mahdi, Investigation of viscosity effect on velocity profile and cavitation formation in diesel injector nozzle, Proceedings of the 8th International Conference on Internal Combustion Engines, Tehran, Iran, 2014.