[1] J.S. Laskowski, R.J. Pugh, Dispersions stability and dispersing agents, in : J.S. Laskowski, J. Ralston (Ed.), Developments in Mineral Processing, New York, Elsevier, 1992, pp. 115-171.
[2] N. Yildiz, M. Erol, B. Baran, Y. Sarikaya, A. Çalimli, Modification of rheology and permeability of Turkish ceramic clays using sodium silicate, Appl. Clay Sci. 13 (1998) 65-77.
[3] F. Andreola, M. Romagnoli, E. Castellini, Role of the surface treatment in the deflocculation of kaolinite, J. Am. Ceram. Soc. 89 (2006) 1107-1109.
[4] Sari, M. Tuzen, D. Citak, M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solutions onto Turkish kaolinite clay, J. Hazard. Mater. 149 (2007) 283-291.
[5] M. Jiang, X. Jin, X. Lu, Z. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252 (2010) 33-39.
[6] D.R. Dinger, Rheology for ceramics, Dinger Ceramic Consulting Service, Clemson, 2002, pp. 1-27.
[7] J.E. Kogel, N.C. Trivedi, J.M. Barker, S.T. Krukowski, Industrial Minerals and Rocks: Commodities, Markets and Uses, in: J.E. Kogel, N.C. Trivedi, J.M. Barker, S.T. Krukowski (Ed.), Society for Mining, Metallurgy and Exploration Inc., Colorado, USA, 2006, pp. 1548.
[8] G. Onal, M. Ozer, F. Arslan, Sedimentation of clay in ultrasonic medium, Miner. Eng. 16 (2003) 129-134.
[9] N.E. Altun, J.Y. Hwang, C. Hicyilmaz, Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment, Int. J. Miner. Process. 91 (2009) 1-13.
[10] T.J. Mason, Chemistry with Ultrasound, Society of Chemical Industry, New York, 1990, pp. 195.
[11] J. Gallego-Juarez, New technologies in high-power ultrasonic industrial applications, Proceedings of IEEE Ultrasonics Symposium, Cannes, France, 1994.
[12] M. Smythe, R. Wakeman, The use of acoustic fields as a filtration and dewatering aid, Ultrasonics, 38 (2000) 657-661.
[13] S.G. Ozkan, Beneficiation of magnesite slimes with ultrasonic treatment, Miner. Eng. 15 (2002) 99-101.
[14] G. Gurpinar, Investigation of the usability of ultrasound waves in mineral processing (in Turkish), PhD Thesis, Osmangazi University, Department of Mining Engineering, 2007.
[15] S.G. Ozkan, H.Z., Kuyumcu, Investigation of mechanism of ultrasound on coal flotation, Int. J. Miner. Process. 81 (2007) 201-203.
[16] M. Xu, Y. Xing, X. Gui, Y. Cao, D. Wang, L. Wang, Effect of ultrasonic pretreatment on oxidized coal flotation, Energ. Fuel. 31 (2017) 14367-14373.
[17] M. Ozer, M.O. Kangal, Y.E. Benkli, F. Arslan, G. Onal, Effect of ultrasonic treatment on the sedimentation of clays, Proceedings of the 9th Balkan Mineral Processing Symposium, ed. G., Onal et al., 63-68, Istanbul,Turkey, 2001.
[18] K. Esmeli, Investigation of effect of ultrasound on stability of mineral suspensions in the presence of different reagents (in Turkish), PhD Thesis, Konya technical university, Department of Mining Engineering, 2019.
[19] C. Schilde, C. Mages-Sauter, A. Kwade, H.P. Schuchmann, Efficiency of different dispersing devices for dispersing nanosized silica and alumina, Powder Technol. 207 (2011) 353-361.
[20] S.A. Adio, M. Sharifpur, J.- P. Meyer, Influence of ultrasonication energy on the dispersion consistency of Al2O3-glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density, J. Exp. Nanosci. 11 (2016) 630-649.
[21] Draganovic´, A. Karamanoukian, P. Ulriksen, S. Larsson, Dispersion of microfine cement grout with ultrasound and conventional laboratory dissolvers, Constr. Build. Mater. 251 (2020) 119068.
[22] J.L. Pe´rez-Rodrı´guez, F. Carrera, J. Poyato, L.A. Perez-Maqueda, Sonication as a tool for preparing nanometric vermiculite particles, Nanotechnology, 13 (2002) 382-387.
[23] J.L. Pe´rez-Rodrı´guez, A. Wiewio´ra, J. Drapala, L.A. Pe´rez-Maqueda, The effect of sonication on dioctahedral and trioctahedral micas, Ultrason. Sonochem. 13 (2006) 61-67.
[24] M. Alkan, O. Demirbas, M. Dogan, Electrokinetic properties of kaolinite in mono-and multivalent electrolyte solutions, Micropor. Mesopor. Mat. 83 (2005) 51-59.
[25] E. Sabah, U. Mart, M. Çinar, M. S. Çelik, Zeta potentials of sepiolite suspensions in concentrated monovalent electrolytes, Sep. Sci. Technol.42 (2007) 1-14.
[26] T. Chen, Y. Yang, Y. Zhao, F. Rao, S. Song, Evaluation of exfoliation degree of montmorillonite in aqueous dispersions through turbidity measurement, RSC Adv.8 (2018) 40823-40828.
[27] P. Somasundaran, Principles of flocculation, dispersion, and selective flocculation, in: P. Somasundaran (Ed.), AIME, New York, 1980, pp. 947-976
[28] J.L. Amorós, V. Beltrán, V. Sanz, J.C. Jarque, Electrokinetic and rheological properties of highly concentrated kaolin dispersions: Influence of particle volume fraction and dispersant concentration, Appl. Clay Sci. 49 (2010) 33-43.
[29] B. Ersoy, A. Evcin, T. Uygunoglu, Z.B. Akdemir, W. Brostow, J. Wahrmund, Zeta potential-viscosity relationship in kaolinite slurry in the presence of dispersants, Arab. J. Sci. Eng. 39 (2014) 5451-5457.
[30] P. Parsonage, D. Melven, A.F. Healey, D. Watson, Depressant function in flotation of calcite, apatite and dolomite, in: M.J. Jones and R. Oblatts (Ed.), Reagents in the minerals industry, Institute of Mining and Metallurgy, London, 1984, pp. 33-40.
[31] F. Andreola, E. Castellini, G. Lusvardi, L. Menabue, M. Romagnoli, Release of ions from kaolinite dispersed in deflocculant solutions, Appl. Clay Sci. 36 (2007) 271–278.
[32] M. Ma, The dispersive effect of sodium silicate on kaolinite particles in process water: implications for iron-ore processing, Clay. Clay Miner. 59 (2011) 233-239.
[33] W. Mekhamer, The colloidal stability of raw bentonite deformed mechanically by ultrasound, J. Saudi Chem. Soc. 14 (2010) 301-306.