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An	optimal	artificial	neural	network	(ANN)	has	been	developed	to	predict	the	Nusselt	
number	of	non-Newtonian	nanofluids.	The	resulting	ANN	is	a	multi-layer	perceptron	
with	 two	hidden	 layers	 consisting	of	 six	 and	nine	neurons,	 respectively.	The	 tangent	
sigmoid	 transfer	 function	 is	 the	 best	 for	 both	 hidden	 layers	 and	 the	 linear	 transfer	
function	is	the	best	transfer	function	for	the	output	layer.	The	network	was	trained	by	
a	 particle	 swarm	 optimization	 (PSO)	 algorithm.	 Nanofluid	 concentration,	 Reynolds	
number,	and	Prandtl	number	are	input	for	the	ANN	and	the	nanofluid	Nusselt	number	is	
its	output.	There	exists	an	excellent	agreement	between	the	ANN	predicted	values	and	
experimental	data.	The	average	and	maximum	differences	between	experimental	data	
and	those	predicted	by	ANN	are	about	0.8	and	5.6	%,	respectively.	It	was	also	found	
that	ANN	predicts	the	Nusselt	number	of	nanofluids	more	accurately	than	the	previously	
proposed	correlation.
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1. Introduction

Heat	transfer	is	the	main	challenge	in	modern	systems	
with	high	heat	fluxes	such	as	nuclear	power	systems,	high	
power	lasers,	space	vehicles,	and	so	on.	Numerous	heat	
transfer	 enhancement	 techniques	 have	 been	 proposed	
to	overcome	this	challenge.	Thermal	characteristics	of	
heat	 transfer	fluids	are	major	parameters	affecting	 the	
performance	of	such	equipment.	Thus	improvement	of	
the	 thermal	 characteristics	 of	 heat	 transfer	 fluids	 can	
improve	the	performance	of	heat	transfer	systems.	It	is	
well	known	 that	dispersion	of	 solid	particles	 in	fluids	
significantly	enhances	their	thermal	characteristics	[1].	
But	problems	concerning	particles	with	large	(milli-	or	
micrometer)	sizes,	such	as	rapid	settling,	high	erosion,	
clogging	 the	 channel	with	 small	 dimensions	 and	high	
pressure	 drop,	 have	 limited	 their	 use.	 Nanoparticles	
are	 uniformly	 suspended	 in	 base	 fluids	 to	 produce	
stable	 suspensions	 which	 do	 not	 have	 the	 mentioned	
problems.	 This	 new	 class	 of	 heat	 transfer	 fluids	 is	
called	 nanofluids	 [2].	 Numerous	 studies	 have	 been	
carried	 out	 on	 thermophysical	 properties	 as	 well	 as	
the	 thermal	and	hydrodynamic	behavior	of	nanofluids	
[3-10].	 Results	 show	 that	 addition	 of	 nanoparticles	
enhances	 the	 thermal	 conductivity	 and	 convective	
heat	 transfer	 coefficient	 of	 the	 base	 fluid	 drastically.	
As	 new	 media	 for	 heat	 transfer,	 it	 is	 expected	 that	
nanofluids	 will	 create	 a	 revolution	 in	 heat	 transfer.	
A	 comprehensive	 investigation	 was	 conducted	 on	
thermal	and	hydrodynamic	behavior	of	non-Newtonian	
nanofluids	by	Hojjat	et	al.	[11-17].	Their	results	show	
that	the	thermal	behavior	of	non-Newtonian	nanofluids	
is	superior	to	that	of	the	base	fluids.	Before	nanofluids	
can	be	used	in	practical	applications	we	should	increase	
our	knowledge	of	principles	governing	the	behavior	of	
nanofluids.	Results	 of	most	 studies	 show	 that	models	
and	correlations	of	conventional	heat	transfer	fluids	do	
not	predict	thermophysical	properties	and	thermal	and	
hydrodynamic	behavior	of	nanofluids	well	[3,9,18,19].	
In	other	words,	there	exists	no	general	model	to	predict	
the	properties	and	behavior	of	nanofluids.	Therefore,	it	
is	vital	 to	find	general	models	 and	correlations	which	
can	 perfectly	 predict	 the	 properties	 and	 behavior	 of	
nanofluids.
Recently,	data	driven	models	based	on	experimental	

data,	such	as	artificial	neural	network,	fuzzy	logic,	and	
evolutionary	optimization	algorithm	(genetic	algorithm,	
particle	 swarm	 optimization,	 etc.),	 have	 been	 used	 to	

find	general	models	for	nanofluids	behavior.
Rheological	 behavior	 of	 various	 nanofluids	 has	

been	 modelled	 by	 using	 an	 ANN	 [12,20-28].	 Some	
investigators	have	used	the	ANN	to	predict	the	thermal	
conductivity	 of	 nanofluids	 [11,27-38].	 Results	 reveal	
the	 high	 capability	 of	 ANN	 to	 predict	 nanofluids	
rheological	behavior	as	well	as	thermal	conductivity.
The	 effect	 of	 nanofluid	 on	 the	 cooling	 performance	

and	 pressure	 drop	 of	 a	 jacketed	 reactor	 has	 been	
experimentally	 investigated	 and	 modeled	 using	 an	
artificial	neural	network	[39].	A	multi-layer	perceptron	
(MLP)	neural	network	with	one	hidden	layer	containing	
ten	 neurons	 was	 used	 for	 convective	 heat	 transfer	
coefficient	 modeling	 and	 a	 MLP	 network	 with	 two	
hidden	 layers	 each	 contains	 six	 neurons	was	used	 for	
pressure	 drop.	 Both	 were	 trained	 by	 the	 Levenberg-
Marquardt	 training	 algorithm.	 Reasonable	 agreement	
between	 experimental	 data	 and	 those	 predicted	 by	
ANNs	 is	 observed.	 Vaferi	 et	 al.	 [40]	 have	 proposed	
the	best	artificial	neural	network	model	 for	prediction	
of	 heat	 transfer	 coefficient	 of	 nanofluids	 in	 a	 circular	
tube	 subjected	 to	 various	 boundary	 conditions	 under	
different	flow	regimes.	Results	obtained	from	the	ANN	
model	have	 compared	with	 some	 reliable	 correlations	
in	 the	 literature.	 They	 found	 that	 the	 performance	 of	
the	 proposed	 model	 was	 higher	 than	 other	 published	
works.	 Laminar	 convective	 heat	 transfer	 of	 Al2O3-
water	 nanofluids	 flowing	 inside	 various	 flat	 tubes	
was	 investigated	 numerically	 using	 CFD	methods	 by	
Safikhani	et	al.	[41].	Simulation	was	carried	out	based	
on	 a	 two-phase	 model.	 They	 calculated	 heat	 transfer	
coefficient	 and	 pressure	 drop	 of	 nanofluids.	 Resulted	
data	were	modeled	by	a	grouped	method	of	data	handling	
(GMDH)	type	ANN.	Finally,	the	obtained	GMDH	model	
was	used	for	Pareto	based	multi-objective	optimization	
of	 nanofluid	 parameters	 in	 horizontal	 flat	 tubes	 by	 a	
non-dominated	genetic	algorithm.	The	resulting	Pareto	
solution	 contains	 significant	 design	 information	 on	
nanofluids	 parameters	 in	 flat	 tubes.	Kalani	 et	 al.	 [42]	
assessed	the	capability	of	two	artificial	neural	networks	
of	a	radial	basis	function	artificial	neural	network	(RBF-
ANN),	 MLP-ANN,	 and	 an	 adaptive	 fuzzy	 inference	
system	 (ANFIS)	 in	 modeling	 the	 complex	 non-linear	
relation	 between	 input	 and	 output	 parameters	 of	 a	
photovoltaic	thermal	nanofluid	based	collector	system.	
Their	 results	 indicate	 that	 all	 three	 models	 have	 the	
ability	 to	 predict	 the	 performance	 of	 the	 mentioned	
system.	However,	the	accuracy	of	the	ANFIS	and	RBF-
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ANN	is	higher	in	estimation	of	electrical	efficiency	and	
fluid	outlet	temperature,	respectively.
Since	 the	 convective	 heat	 transfer	 coefficient	 of	

nanofluids	 is	 the	 main	 parameter	 influencing	 the	
performance	 of	 heat	 transfer	 equipment	 and	 fewer	
investigations	 have	 carried	 out	 on	 modeling	 this	
important	 parameter,	 in	 the	 present	 study	 turbulent	
flow	forced	convective	heat	transfer	of	non-Newtonian	
nanofluids	 flowing	 through	 a	 circular	 tube	 under	
constant	 wall	 temperature	 boundary	 condition	 was	
modeled	 by	 an	 optimized	 artificial	 neural	 network.	 It	
receives	the	nanofluid	volume	fraction,	Prandtl	number,	
and	Reynolds	number	as	input	variables	and	gives	the	
Nusselt	number	of	nanofluids	as	output.	A	particle	swarm	
optimization	algorithm	was	used	to	determine	the	best	
values	of	the	ANN	parameters	instead	of	conventional	
gradient	based	training	algorithms.

2. Experiments

Experimental	 data	 are	 obtained	 from	 	 results	 of	 the	
author’s	previous	work	[16].		This	experiment	is	briefly	
reviewed	 below.	 Turbulent	 forced	 convective	 heat	
transfer	of	non-Newtonian	nanofluids	flowing	through	
a	 double-pipe	 heat	 exchanger	 was	 experimentally	
investigated.	 Nanofluids	 flow	 in	 the	 inner	 tube.	 Hot	
water	circulated	through	the	annular	section	at	very	high	
flow	rates	so	it	is	reasonable	to	consider	the	boundary	
condition	as	constant	temperature	[16].

2.1. Nanofluids preparation

Nanofluids	 under	 consideration	 were	 suspensions	
of	 γ-Al2O3	 (25	 nm),	 TiO2	 (10	 nm),	 CuO	 (30-50	 nm)	
nanoparticles	in	0.5	wt%	CMC	solution.	Since	ultrasonic	
vibrations	 altered	 the	 rheological	 behavior	 of	 a	CMC	
solution,	nanoparticles	were	first	dispersed	in	deionized	
water	 and	 sonicated	 to	 obtain	 uniform	 suspensions.	
An	 appropriate	 amount	 of	 high	 concentration	 CMC	
solution	was	added	to	the	suspensions	and	well	mixed	
by	a	mechanical	mixer	to	achieve	the	desired	nanofluids	
[16].
A	KD2	thermal	property	meter	(Decagon	Device	Inc.,	

USA)	 was	 used	 to	 measure	 the	 thermal	 conductivity	
of	nanofluids.	Rheological	behavior	of	nanofluids	was	
investigated	 using	 a	 rotational	 rheometer	 (HAAKE	
RV12).	Results	show	that	all	nanofluids	as	well	as	the	
base	 fluid	 exhibit	 pseudoplastic	 behavior	 [12].	 Other	

physical	 properties	 were	 calculated	 at	 average	 bulk	
temperature	according	to	the	following	equations	[16]:

ρnf	=	ϕρp+	(1-ϕ	)ρbf	 	 	 	 							(1)

(ρCP)nf	=	ϕ(ρCP)p+	(1-ϕ	)(ρCP)nf	 	 	 							(2)

Because	 of	 very	 low	 concentrations	 of	 the	 carboxy	
methyl	cellulose,	the	physical	properties	of	the	base	fluid	
are	considered	similar	to	those	of	pure	water.	Physical	
properties	of	nanoparticles	are	given	in	Table	1.

2.2. Experimental procedure

A	 schematic	 diagram	 of	 the	 experimental	 set-up	 is	
shown	 in	Figure	1	 [16].	 It	 is	comprised	of	 two	 loops.	
The	 first	 loop,	 including	 a	 container,	 a	 stainless	 steel	
gear	pump,	a	bypass	line,	a	flow	meter,	a	cooler,	several	
valves,	and	a	test	section,	is	related	to	nanofluids.	The	
test	section	is	a	circular	pipe	with	the	length	of	200	cm	
and	inner	diameter	of	1	cm.	The	second	cycle	is	related	
to	 hot	 water	 which	 is	 cooled	 in	 a	 double-pipe	 heat	
exchanger	by	the	nanofluid.	Six	K-Type	thermocouples	
mounted	on	 the	 outer	wall	 of	 the	 inner	 tube	 are	 used	
to	measure	 the	wall	 temperature.	 Two	 thermocouples	
are	 used	 to	measure	 the	 inlet	 and	 outlet	 temperatures	
of	 the	 nanofluid.	 Details	 of	 experimental	 procedure	
and	calculation	of	heat	transfer	coefficient	and	Nusselt	
number	are	explained	in	Ref.	[16].

3. Particle swarm optimization

Particle	 swarm	 optimization	 is	 a	 population-based	
stochastic	 metaheuristic	 computational	 optimization	
algorithm	inspired	by	bird	flocking	and	fish	schooling.	
PSO	was	 first	 proposed	 by	Kennedy	 and	 Eberhart	 in	
1995	 [44].	 To	 implement	 PSO,	 first	 a	 population	 of	
particles	 is	 produced	 randomly	 on	 a	 D	 dimensional	
space	 of	 the	 problem.	 Every	 particle	 which	 can	 be	 a	
solution	of	the	problem	is	characterized	by	its	position,	
Xi	=	(xi1,	xi2,	…,	xiD)	and	velocity,	Vi	=	(vi1,vi2,	…,	viD)	

Table 1.	Physical	properties	of	the	nanoparticles	[43].

Nanoparticle Density	(kg/m3) CP	(J/kgK)

γ-Al2O3 3700 880

TiO2 3900 710

CuO 6350 535.6
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vectors.	For	each	particle	the	value	of	cost	function	is	
evaluated.	The	cost	value	of	each	particle	is	compared	
with	 its	own	best	 experience	 (local	best)	 and	 the	best	
experience	 of	 all	 other	 particles	 (global	 best).	 Each	
particle	adjusts	its	velocity	and	position	according	to	the	
following	equations	(Constriction	coefficient):

	 	 	 	 	 	 							(3)

xij	(t+1)	=	xij(t	)	+vij	(t+1)	 	 	 							(4)

where:

	 	 	 	 	 	 							(5)

with:
ϕ	=	ϕ1+	ϕ2
ϕ1	=	c1	r1
ϕ2	=	c2	r2

Equation	(5)	is	used	under	the	constraints	that	ϕ	≥	4	
and	κ	a[0,1].
The	procedure	is	repeated	until	the	stopping	criterion	

is	satisfied.
In	the	present	study	parameters	were	chosen	as:	ϕ	=	

4.1,	ϕ1=	ϕ2	=	2.05	and	κ	=1.

4. Artificial Neural Network Design

ANN	 is	 a	 powerful	 tool	 inspired	 by	 the	 human	
nervous	 system	 and	 is	 capable	 of	modelling	 complex	
functions.	An	ANN	consists	of	an	input,	an	output,	and	

one	 or	 more	 hidden	 layers.	 Information	 of	 source	 is	
propagated	 into	 the	 neural	 network	 through	 the	 input	
layer.	The	output	layer	gives	the	results	of	information	
processing.	The	 number	 of	 hidden	 layers	 depends	 on	
the	complexity	of	the	problem,	but	in	most	cases	it	was	
found	that	one	or	two	hidden	layers	are	sufficient	[11,45-
48].	Each	layer	consists	of	a	number	of	neurons,	which	
are	the	basic	structural	components	of	neural	networks.	
The	 numbers	 of	 neurons	 in	 the	 input	 and	 output	
layers	are	equal	to	the	numbers	of	input	variables	and	
targets,	 respectively.	Several	methods	have	been	used	
by	 investigators	 to	 determine	 the	 number	 of	 neurons	
in	 the	 hidden	 layers,	 but	 they	 only	 produce	 general	
guidelines	[49-52].	The	optimum	number	of	neurons	in	
the	hidden	layers	is	often	determined	by	trial	and	errors.	
The	neural	network	is	trained	with	different	numbers	of	
hidden	neurons	and	the	best	number	of	hidden	neurons	
is	 determined	according	 to	 the	values	of	one	or	more	
evaluating	 statistical	 criteria	 such	 as	 mean	 square	 of	
errors	(MSE),	mean	absolute	error	(MAE),	coefficient	
of	 determination	 (R2),	 and	 so	 on.	This	 kind	 of	 neural	
networks	is	often	called	multi-layer	perceptron	(MLP)	
neural	network.	The	output	of	each	neuron	is	sent	to	all	
neurons	of	the	next	layer	through	weighted	connections.	
In	each	neuron	input	values	are	added	with	a	bias,	and	
then	an	activation	 function	 is	applied	on	 the	 resulting	
value	to	yield	the	output	as:

	 	 	 	 	 	 						(6)

where	yi	is	the	ith	neuron’s	output,	xj	is	the	output	of	jth	

neuron	in	the	previous	layer,	wij	is	the	weight,	bi	is	the	
bias	of	the	ith	neuron,	and	f	is	the	activation	function.	
Weights	 are	 randomly	 selected	 at	 the	 beginning	 of	
the	 training	 process	 and	 then	 adjusted	 according	 to	 a	
training	algorithm.	Here	the	PSO	algorithm	is	used	as	
an	alternative	to	traditional	training	algorithms	such	as	
Levenberg-Marquardt	 (LM),	 gradient	 descent	 (GD),	
and	 so	 on.	The	 optimization	 algorithm	minimizes	 the	
MSE	as	 cost	 function.
Although	 not	 compulsory,	 input	 data	 are	 often	

normalized	between	0	and	1	 to	avoid	some	numerical	
problems.	This	also	causes	 the	 input	data	 to	be	of	 the	
same	order.	The	input	dataset	is	divided	into	two	parts:	
training	data	and	test	data.	Training	data	are	used	to	train	
the	neural	network	according	to	the	PSO	algorithm.	Test	
data	are	used	to	identify	how	well	the	ANN	is	trained.
The	performance	of	ANNs	may	be	assessed	based	on	

Fig. 1.	Experimental	setup	of		data	results	in	[16].
 

vij t+1 =χ vij t +ϕ1 xij
lbest(t)-xij(t) +ϕ2 xj

gbest(t)-xij(t)                                                               

 

χ=
2κ

2-ϕ- ϕ ϕ-4
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(a)

(b)

some	 statistical	 criteria	 including	mean	 squared	 error	
(MSE),	 maximum	 absolute	 relative	 deviation	 (Max	
ARD	%),	 average	 absolute	 relative	 deviation	 (AARD	
%),	 and	 correlation	 coefficient	 (r),	 defined	 as:

	 	 	 	 	 	 							(7)

	 	 	 	 	 	 							(8)

	 	 	 	 	 	 							(9)

	 	 	 	 	 	 					(10)

where	yiexp,	yical,	ӯ,	and	n	are	experimental	data,	predicted	
data	by	ANN,	mean	value	of	data,	and	number	of	data	
points,	respectively.

5. Artificial Neural Network Architecture

In	the	present	study	an	optimal	multi-layer	perceptron	
neural	network	was	designed	to	model	the	experimental	
data	 of	 turbulent	 flow	 of	 non-Newtonian	 nanofluids	
in	a	circular	 tube	with	constant	wall	 temperature.	Our	
previous	experimental	data	are	used	to	obtain	the	ANN	
model	[16].
The	 optimum	 neural	 network	 architecture	 was	

determined	by	trial	and	error	according	to	steps	shown	
in	Figure	2.
First	 experimental	 data	were	 normalized	 between	 0	

and	1	according	to	equation	(11):

	 	 	 	 	 	 					(11)

Then	 randomly	 divided	 into	 three	 parts:	 training	
data	set	 (75%),	validating	data	set	 (5%),	and	 test	data	
set	 (20%).	 The	 architecture	 of	 an	 ANN	 is	 normally	
determined	 by	 trial	 and	 error.	 First,	 the	 number	 of	
hidden	layers	and	the	number	of	neurons	in	each	layer	
were	 set.	Then	 the	 network	was	 trained	 by	 a	 training	
algorithm.	The	activation	functions	of	hidden	and	output	
layers	were	changed	and	the	performance	of	ANN	was	
assessed	 to	 specify	 the	 best	 activation	 functions.	 In	

order	to	determine	the	best	number	of	hidden	neurons,	
the	 network	 was	 trained	 with	 different	 numbers	 of	
hidden	 neurons	 and	 its	 performance	 was	 evaluated.	
After	that,	the	number	of	hidden	layers	was	changed	to	
determine	the	best	number	of	hidden	layers.	Next,	the	
best	activation	function	of	added	hidden	layers	was	also	
determined	by	trial	and	error.	To	evaluate	the	network	
repeatability	 each	 network	 trained	 15	 times.	 Finally,	
instead	 of	 using	 conventional	 training	 algorithms	
for	 training	 the	ANN,	 the	 PSO	 algorithm	 is	 used	 to	
determine	the	best	values	of	ANN	parameters	(weights	
and	biases).
The	 ANN	 architecture	 shown	 in	 Figure	 3	 consists	

of	two	hidden	layers	of	6	and	9	neurons,	respectively.	
The	 activation	 functions	 of	 both	 hidden	 layers	 are	
hyperbolic	 tangent	 sigmoid	 transfer	 function	 (tansig),	
and	that	of	the	output	layer	is	a	linear	transfer	function	
(purelin).	MSE	was	chosen	as	the	network	performance	
function.	It	evaluates	the	ANN	performance	according	
to	the	mean	of	squared	errors.	ANN	receives	nanofluid	
concentration,	Reynolds	number,	and	Prandtl	number	as	
input	parameters	and	gives	the	resulting	Nusselt	number	
as	output.

Fig. 2.	Algorithm	for	optimization	of	ANN	architecture.

Data normalization

Set tansig and purelin as activation functions of hidden  and 
output layers, respectively- select LM as training algorithm

Set the number of hidden layer to 1 and 
the number of neurons in it to 5

Specify the best number of neurons in 
hidden layer

Change the number of hidden layers

Determine the architecture of ANN

Determine the best activation functions 

Specify the best activation function of 
added hidden layer

Train ANN by PSO algorithm
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5. Results

Figure	4	 shows	 the	ANN	predicted	values	of	Nu	 in	
comparison	 with	 the	 experimental	 data.	 As	 can	 be	
seen,	 there	 exists	 very	 good	 agreement	 between	 the	
experimental	data	 and	corresponding	values	predicted	
by	 the	ANN	model.	 The	 values	 of	 statistical	 criteria,			
given	in	Table	2,	suggest		the	accuracy	of	the	proposed	
ANN.
Values	 predicted	 by	 the	ANN	model	 are	 compared	

with	experimental	data	in	Figure	5.	Excellent	agreement	
between	 the	 ANN	 model	 and	 experimental	 data	 is	
obvious.	Max	ARD	%	and	AARD	%	of	ANN	are	about	
5.6	 and	 0.8%,	 respectively.
The	following	correlation	has	been	proposed	for	the	

Nusselt	number	of	non-Newtonian	nanofluids	 [16]:

Nu=	0.00115	Re1.050	Pr0.693	(1+	ϕ0.388)		 	 					(12)
(2900	<	Re	<	8800	and	39	<	Pr	<	71)																																			

In	Table	3	 the	artificial	neural	network	 is	 compared	
with	 the	 above	mentioned	 correlation.	 It	 is	 clear	 that	
the	ANN	predicts	the	Nu	of	nanofluids	better	than	the	
correlation.	Max	ARD	%	 and	AARD	%	 of	ANN	 are	

Fig. 3.	Architecture	of	the	ANN.

Fig. 4.	ANN	predicted	Nu	against	experimental	Nu	in	(a)	training	
dataset	and	(b)	test	dataset.

almost	 half	 and	 one	 fifth	 of	 those	 of	 the	 correlation,	
respectively.

6. Conclusion

Nanofluids	 are	 a	 new	 class	 of	 heat	 transfer	 fluids	
that	 possess	 better	 thermal	 characteristics	 than	 the	
base	 fluids.	 Correlation	 of	 conventional	 heat	 transfer	
fluids	 cannot	 predict	 the	 behavior	 of	 nanofluids	well.	
So	 finding	 new	models	 for	 predicting	 the	 features	 of	
nanofluids	 is	 important.	 An	 artificial	 neural	 network	
has	the	ability	of	modeling	nonlinear	functions.	In	this	
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Table 2.	Statistical	criteria	of	the	proposed	ANN.

Max	ARD	% AARD	% r

Training	data 1.37729 0.316967 0.9999

Test	data 5.638172 2.357044 0.9880

(b)

Table 3.	 Comparison	 of	ANN	 and	 equation	 (12)	 for	 Nu	 of	 non-
Newtonian	 nanofluid.

Method Max	ARD	% AARD	%

ANN 5.64 0.83

Proposed	correlation	[16] 10.4 3.82
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Fig. 5.	 Comparison	 between	 experimental	 data	 [16]	 and	 values	
predicted	by	the	ANN	(a)Al2O3/CMC,	(b)	CuO/CMC		and	(c)TiO2/
CMC	nanofluids.

investigation	an	artificial	neural	network	was	designed	
and	optimized	by	PSO	algorithm	to	predict	the	Nusselt	
number	of	non-Newtonian	nanofluids	flowing	through	
a	 circular	 tube	 subjected	 to	constant	wall	 temperature	
in	a	turbulent	regime.	The	developed	network	consists	
of	 two	 hidden	 layers	 with	 six	 and	 nine	 neurons,	
respectively.	Max	ARD	%	and	AARD	%	between	 the	
ANN	predicted	values	and	experimental	data	are	5.64	
and	 0.83,	 respectively;	 this	 indicates	 the	 excellent	
predictive	ability	of	the	ANN.	Results	also	show	that	the	

ANN	is	better	than	the	previously	proposed	correlation.	
The	maximum	and	average	absolute	relative	deviations	
of	the	ANN	are	almost	half	and	one	fifth	of	the	values	
predicted	by	the	correlation	in	the	literature.
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