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An optimal artificial neural network (ANN) has been developed to predict the Nusselt 
number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron 
with two hidden layers consisting of six and nine neurons, respectively. The tangent 
sigmoid transfer function is the best for both hidden layers and the linear transfer 
function is the best transfer function for the output layer. The network was trained by 
a particle swarm optimization (PSO) algorithm. Nanofluid concentration, Reynolds 
number, and Prandtl number are input for the ANN and the nanofluid Nusselt number is 
its output. There exists an excellent agreement between the ANN predicted values and 
experimental data. The average and maximum differences between experimental data 
and those predicted by ANN are about 0.8 and 5.6 %, respectively. It was also found 
that ANN predicts the Nusselt number of nanofluids more accurately than the previously 
proposed correlation.
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1. Introduction

Heat transfer is the main challenge in modern systems 
with high heat fluxes such as nuclear power systems, high 
power lasers, space vehicles, and so on. Numerous heat 
transfer enhancement techniques have been proposed 
to overcome this challenge. Thermal characteristics of 
heat transfer fluids are major parameters affecting the 
performance of such equipment. Thus improvement of 
the thermal characteristics of heat transfer fluids can 
improve the performance of heat transfer systems. It is 
well known that dispersion of solid particles in fluids 
significantly enhances their thermal characteristics [1]. 
But problems concerning particles with large (milli- or 
micrometer) sizes, such as rapid settling, high erosion, 
clogging the channel with small dimensions and high 
pressure drop, have limited their use. Nanoparticles 
are uniformly suspended in base fluids to produce 
stable suspensions which do not have the mentioned 
problems. This new class of heat transfer fluids is 
called nanofluids [2]. Numerous studies have been 
carried out on thermophysical properties as well as 
the thermal and hydrodynamic behavior of nanofluids 
[3-10]. Results show that addition of nanoparticles 
enhances the thermal conductivity and convective 
heat transfer coefficient of the base fluid drastically. 
As new media for heat transfer, it is expected that 
nanofluids will create a revolution in heat transfer. 
A comprehensive investigation was conducted on 
thermal and hydrodynamic behavior of non-Newtonian 
nanofluids by Hojjat et al. [11-17]. Their results show 
that the thermal behavior of non-Newtonian nanofluids 
is superior to that of the base fluids. Before nanofluids 
can be used in practical applications we should increase 
our knowledge of principles governing the behavior of 
nanofluids. Results of most studies show that models 
and correlations of conventional heat transfer fluids do 
not predict thermophysical properties and thermal and 
hydrodynamic behavior of nanofluids well [3,9,18,19]. 
In other words, there exists no general model to predict 
the properties and behavior of nanofluids. Therefore, it 
is vital to find general models and correlations which 
can perfectly predict the properties and behavior of 
nanofluids.
Recently, data driven models based on experimental 

data, such as artificial neural network, fuzzy logic, and 
evolutionary optimization algorithm (genetic algorithm, 
particle swarm optimization, etc.), have been used to 

find general models for nanofluids behavior.
Rheological behavior of various nanofluids has 

been modelled by using an ANN [12,20-28]. Some 
investigators have used the ANN to predict the thermal 
conductivity of nanofluids [11,27-38]. Results reveal 
the high capability of ANN to predict nanofluids 
rheological behavior as well as thermal conductivity.
The effect of nanofluid on the cooling performance 

and pressure drop of a jacketed reactor has been 
experimentally investigated and modeled using an 
artificial neural network [39]. A multi-layer perceptron 
(MLP) neural network with one hidden layer containing 
ten neurons was used for convective heat transfer 
coefficient modeling and a MLP network with two 
hidden layers each contains six neurons was used for 
pressure drop. Both were trained by the Levenberg-
Marquardt training algorithm. Reasonable agreement 
between experimental data and those predicted by 
ANNs is observed. Vaferi et al. [40] have proposed 
the best artificial neural network model for prediction 
of heat transfer coefficient of nanofluids in a circular 
tube subjected to various boundary conditions under 
different flow regimes. Results obtained from the ANN 
model have compared with some reliable correlations 
in the literature. They found that the performance of 
the proposed model was higher than other published 
works. Laminar convective heat transfer of Al2O3-
water nanofluids flowing inside various flat tubes 
was investigated numerically using CFD methods by 
Safikhani et al. [41]. Simulation was carried out based 
on a two-phase model. They calculated heat transfer 
coefficient and pressure drop of nanofluids. Resulted 
data were modeled by a grouped method of data handling 
(GMDH) type ANN. Finally, the obtained GMDH model 
was used for Pareto based multi-objective optimization 
of nanofluid parameters in horizontal flat tubes by a 
non-dominated genetic algorithm. The resulting Pareto 
solution contains significant design information on 
nanofluids parameters in flat tubes. Kalani et al. [42] 
assessed the capability of two artificial neural networks 
of a radial basis function artificial neural network (RBF-
ANN), MLP-ANN, and an adaptive fuzzy inference 
system (ANFIS) in modeling the complex non-linear 
relation between input and output parameters of a 
photovoltaic thermal nanofluid based collector system. 
Their results indicate that all three models have the 
ability to predict the performance of the mentioned 
system. However, the accuracy of the ANFIS and RBF-
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ANN is higher in estimation of electrical efficiency and 
fluid outlet temperature, respectively.
Since the convective heat transfer coefficient of 

nanofluids is the main parameter influencing the 
performance of heat transfer equipment and fewer 
investigations have carried out on modeling this 
important parameter, in the present study turbulent 
flow forced convective heat transfer of non-Newtonian 
nanofluids flowing through a circular tube under 
constant wall temperature boundary condition was 
modeled by an optimized artificial neural network. It 
receives the nanofluid volume fraction, Prandtl number, 
and Reynolds number as input variables and gives the 
Nusselt number of nanofluids as output. A particle swarm 
optimization algorithm was used to determine the best 
values of the ANN parameters instead of conventional 
gradient based training algorithms.

2. Experiments

Experimental data are obtained from   results of the 
author’s previous work [16].  This experiment is briefly 
reviewed below. Turbulent forced convective heat 
transfer of non-Newtonian nanofluids flowing through 
a double-pipe heat exchanger was experimentally 
investigated. Nanofluids flow in the inner tube. Hot 
water circulated through the annular section at very high 
flow rates so it is reasonable to consider the boundary 
condition as constant temperature [16].

2.1. Nanofluids preparation

Nanofluids under consideration were suspensions 
of γ-Al2O3 (25 nm), TiO2 (10 nm), CuO (30-50 nm) 
nanoparticles in 0.5 wt% CMC solution. Since ultrasonic 
vibrations altered the rheological behavior of a CMC 
solution, nanoparticles were first dispersed in deionized 
water and sonicated to obtain uniform suspensions. 
An appropriate amount of high concentration CMC 
solution was added to the suspensions and well mixed 
by a mechanical mixer to achieve the desired nanofluids 
[16].
A KD2 thermal property meter (Decagon Device Inc., 

USA) was used to measure the thermal conductivity 
of nanofluids. Rheological behavior of nanofluids was 
investigated using a rotational rheometer (HAAKE 
RV12). Results show that all nanofluids as well as the 
base fluid exhibit pseudoplastic behavior [12]. Other 

physical properties were calculated at average bulk 
temperature according to the following equations [16]:

ρnf = ϕρp+ (1-ϕ )ρbf	 	 	 	        (1)

(ρCP)nf = ϕ(ρCP)p+ (1-ϕ )(ρCP)nf	 	 	        (2)

Because of very low concentrations of the carboxy 
methyl cellulose, the physical properties of the base fluid 
are considered similar to those of pure water. Physical 
properties of nanoparticles are given in Table 1.

2.2. Experimental procedure

A schematic diagram of the experimental set-up is 
shown in Figure 1 [16]. It is comprised of two loops. 
The first loop, including a container, a stainless steel 
gear pump, a bypass line, a flow meter, a cooler, several 
valves, and a test section, is related to nanofluids. The 
test section is a circular pipe with the length of 200 cm 
and inner diameter of 1 cm. The second cycle is related 
to hot water which is cooled in a double-pipe heat 
exchanger by the nanofluid. Six K-Type thermocouples 
mounted on the outer wall of the inner tube are used 
to measure the wall temperature. Two thermocouples 
are used to measure the inlet and outlet temperatures 
of the nanofluid. Details of experimental procedure 
and calculation of heat transfer coefficient and Nusselt 
number are explained in Ref. [16].

3. Particle swarm optimization

Particle swarm optimization is a population-based 
stochastic metaheuristic computational optimization 
algorithm inspired by bird flocking and fish schooling. 
PSO was first proposed by Kennedy and Eberhart in 
1995 [44]. To implement PSO, first a population of 
particles is produced randomly on a D dimensional 
space of the problem. Every particle which can be a 
solution of the problem is characterized by its position, 
Xi = (xi1, xi2, …, xiD) and velocity, Vi = (vi1,vi2, …, viD) 

Table 1. Physical properties of the nanoparticles [43].

Nanoparticle Density (kg/m3) CP (J/kgK)

γ-Al2O3 3700 880

TiO2 3900 710

CuO 6350 535.6
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vectors. For each particle the value of cost function is 
evaluated. The cost value of each particle is compared 
with its own best experience (local best) and the best 
experience of all other particles (global best). Each 
particle adjusts its velocity and position according to the 
following equations (Constriction coefficient):

	 	 	 	 	 	        (3)

xij (t+1) = xij(t ) +vij (t+1)	 	 	        (4)

where:

	 	 	 	 	 	        (5)

with:
ϕ = ϕ1+ ϕ2
ϕ1 = c1 r1
ϕ2 = c2 r2

Equation (5) is used under the constraints that ϕ ≥ 4 
and κ a[0,1].
The procedure is repeated until the stopping criterion 

is satisfied.
In the present study parameters were chosen as: ϕ = 

4.1, ϕ1= ϕ2 = 2.05 and κ =1.

4. Artificial Neural Network Design

ANN is a powerful tool inspired by the human 
nervous system and is capable of modelling complex 
functions. An ANN consists of an input, an output, and 

one or more hidden layers. Information of source is 
propagated into the neural network through the input 
layer. The output layer gives the results of information 
processing. The number of hidden layers depends on 
the complexity of the problem, but in most cases it was 
found that one or two hidden layers are sufficient [11,45-
48]. Each layer consists of a number of neurons, which 
are the basic structural components of neural networks. 
The numbers of neurons in the input and output 
layers are equal to the numbers of input variables and 
targets, respectively. Several methods have been used 
by investigators to determine the number of neurons 
in the hidden layers, but they only produce general 
guidelines [49-52]. The optimum number of neurons in 
the hidden layers is often determined by trial and errors. 
The neural network is trained with different numbers of 
hidden neurons and the best number of hidden neurons 
is determined according to the values of one or more 
evaluating statistical criteria such as mean square of 
errors (MSE), mean absolute error (MAE), coefficient 
of determination (R2), and so on. This kind of neural 
networks is often called multi-layer perceptron (MLP) 
neural network. The output of each neuron is sent to all 
neurons of the next layer through weighted connections. 
In each neuron input values are added with a bias, and 
then an activation function is applied on the resulting 
value to yield the output as:

	 	 	 	 	 	       (6)

where yi is the ith neuron’s output, xj is the output of jth 

neuron in the previous layer, wij is the weight, bi is the 
bias of the ith neuron, and f is the activation function. 
Weights are randomly selected at the beginning of 
the training process and then adjusted according to a 
training algorithm. Here the PSO algorithm is used as 
an alternative to traditional training algorithms such as 
Levenberg-Marquardt (LM), gradient descent (GD), 
and so on. The optimization algorithm minimizes the 
MSE as cost function.
Although not compulsory, input data are often 

normalized between 0 and 1 to avoid some numerical 
problems. This also causes the input data to be of the 
same order. The input dataset is divided into two parts: 
training data and test data. Training data are used to train 
the neural network according to the PSO algorithm. Test 
data are used to identify how well the ANN is trained.
The performance of ANNs may be assessed based on 

Fig. 1. Experimental setup of  data results in [16].
 

vij t+1 =χ vij t +ϕ1 xij
lbest(t)-xij(t) +ϕ2 xj

gbest(t)-xij(t)                                                               

 

χ=
2κ

2-ϕ- ϕ ϕ-4
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(a)

(b)

some statistical criteria including mean squared error 
(MSE), maximum absolute relative deviation (Max 
ARD %), average absolute relative deviation (AARD 
%), and correlation coefficient (r), defined as:

	 	 	 	 	 	        (7)

	 	 	 	 	 	        (8)

	 	 	 	 	 	        (9)

	 	 	 	 	 	      (10)

where yiexp, yical, ӯ, and n are experimental data, predicted 
data by ANN, mean value of data, and number of data 
points, respectively.

5. Artificial Neural Network Architecture

In the present study an optimal multi-layer perceptron 
neural network was designed to model the experimental 
data of turbulent flow of non-Newtonian nanofluids 
in a circular tube with constant wall temperature. Our 
previous experimental data are used to obtain the ANN 
model [16].
The optimum neural network architecture was 

determined by trial and error according to steps shown 
in Figure 2.
First experimental data were normalized between 0 

and 1 according to equation (11):

	 	 	 	 	 	      (11)

Then randomly divided into three parts: training 
data set (75%), validating data set (5%), and test data 
set (20%). The architecture of an ANN is normally 
determined by trial and error. First, the number of 
hidden layers and the number of neurons in each layer 
were set. Then the network was trained by a training 
algorithm. The activation functions of hidden and output 
layers were changed and the performance of ANN was 
assessed to specify the best activation functions. In 

order to determine the best number of hidden neurons, 
the network was trained with different numbers of 
hidden neurons and its performance was evaluated. 
After that, the number of hidden layers was changed to 
determine the best number of hidden layers. Next, the 
best activation function of added hidden layers was also 
determined by trial and error. To evaluate the network 
repeatability each network trained 15 times. Finally, 
instead of using conventional training algorithms 
for training the ANN, the PSO algorithm is used to 
determine the best values of ANN parameters (weights 
and biases).
The ANN architecture shown in Figure 3 consists 

of two hidden layers of 6 and 9 neurons, respectively. 
The activation functions of both hidden layers are 
hyperbolic tangent sigmoid transfer function (tansig), 
and that of the output layer is a linear transfer function 
(purelin). MSE was chosen as the network performance 
function. It evaluates the ANN performance according 
to the mean of squared errors. ANN receives nanofluid 
concentration, Reynolds number, and Prandtl number as 
input parameters and gives the resulting Nusselt number 
as output.

Fig. 2. Algorithm for optimization of ANN architecture.

Data normalization

Set tansig and purelin as activation functions of hidden  and 
output layers, respectively- select LM as training algorithm

Set the number of hidden layer to 1 and 
the number of neurons in it to 5

Specify the best number of neurons in 
hidden layer

Change the number of hidden layers

Determine the architecture of ANN

Determine the best activation functions 

Specify the best activation function of 
added hidden layer

Train ANN by PSO algorithm
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5. Results

Figure 4 shows the ANN predicted values of Nu in 
comparison with the experimental data. As can be 
seen, there exists very good agreement between the 
experimental data and corresponding values predicted 
by the ANN model. The values of statistical criteria,   
given in Table 2, suggest  the accuracy of the proposed 
ANN.
Values predicted by the ANN model are compared 

with experimental data in Figure 5. Excellent agreement 
between the ANN model and experimental data is 
obvious. Max ARD % and AARD % of ANN are about 
5.6 and 0.8%, respectively.
The following correlation has been proposed for the 

Nusselt number of non-Newtonian nanofluids [16]:

Nu= 0.00115 Re1.050 Pr0.693 (1+ ϕ0.388) 	 	      (12)
(2900 < Re < 8800 and 39 < Pr < 71)                                   

In Table 3 the artificial neural network is compared 
with the above mentioned correlation. It is clear that 
the ANN predicts the Nu of nanofluids better than the 
correlation. Max ARD % and AARD % of ANN are 

Fig. 3. Architecture of the ANN.

Fig. 4. ANN predicted Nu against experimental Nu in (a) training 
dataset and (b) test dataset.

almost half and one fifth of those of the correlation, 
respectively.

6. Conclusion

Nanofluids are a new class of heat transfer fluids 
that possess better thermal characteristics than the 
base fluids. Correlation of conventional heat transfer 
fluids cannot predict the behavior of nanofluids well. 
So finding new models for predicting the features of 
nanofluids is important. An artificial neural network 
has the ability of modeling nonlinear functions. In this 

 

 

1

2

3

6

1

2

3

9

Input layer

Re

Pr

ϕ

H
idden layer 1

H
idden layer 2

O
utput layer

Nu

Bias Bias
 

 

 

100

120

140

160

180

200

220

100 120 140 160 180 200 220

N
u 

(A
N

N
)

Nu (Exp)

Training data
r = 0.9999

(a)

100

120

140

160

180

200

100 120 140 160 180 200

N
u 

(A
N

N
)

Nu (Exp)

Test data
r = 0.9880

(c)

Table 2. Statistical criteria of the proposed ANN.

Max ARD % AARD % r

Training data 1.37729 0.316967 0.9999

Test data 5.638172 2.357044 0.9880

(b)

Table 3. Comparison of ANN and equation (12) for Nu of non-
Newtonian nanofluid.

Method Max ARD % AARD %

ANN 5.64 0.83

Proposed correlation [16] 10.4 3.82
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Fig. 5. Comparison between experimental data [16] and values 
predicted by the ANN (a)Al2O3/CMC, (b) CuO/CMC  and (c)TiO2/
CMC nanofluids.

investigation an artificial neural network was designed 
and optimized by PSO algorithm to predict the Nusselt 
number of non-Newtonian nanofluids flowing through 
a circular tube subjected to constant wall temperature 
in a turbulent regime. The developed network consists 
of two hidden layers with six and nine neurons, 
respectively. Max ARD % and AARD % between the 
ANN predicted values and experimental data are 5.64 
and 0.83, respectively; this indicates the excellent 
predictive ability of the ANN. Results also show that the 

ANN is better than the previously proposed correlation. 
The maximum and average absolute relative deviations 
of the ANN are almost half and one fifth of the values 
predicted by the correlation in the literature.
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