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•	 Compocasting processing of  A356-
SiCp composites was studied.

•	 Simultaneous effects of process 
parameters on SiC distribution 
were studied.

•	 D-optimal design of experiment 
was used for optimization.
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This paper presents an experimental design approach to the process parameter 
optimization for compocasting of A356-SiCp composites. Toward this end, parameters of 
stirring temperature, stirring time, stirring speed and SiC content were chosen and three 
levels of these parameters were considered. The D-optimal design of experiment (DODE) 
was employed for experimental design and analysis of results. In the experimental stage, 
different 20 µm-sized SiC particle contents (5, 10 and 15 vol %) were introduced into 
semisolid-state A356 aluminium alloy. Semisolid stirring was carried out at temperatures 
of 590, 600 and 610 °C with stirring speeds of 200, 400 and 600 rpm for 10, 20 and 30 
min. The effect of these parameters on the distribution of the SiC particles within the 
matrix, represented by distribution factor (DF), was investigated. The smaller value of 
DF is indicative of the more uniform distribution of the SiC particles in the matrix. It 
was observed that the SiC particle content of 15 vol %, stirring temperature of 590 °C, 
stirring speed of 500 rpm, and stirring time of 30 min were the optimum parameter 
values producing the best distribution of the SiC particles in the matrix. The statistical 
test revealed that the main effect of the stirring temperature is the most significant factor. 
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1. Introduction

It is well known that metal matrix composites (MMCs) 
are characterized by high specific strength, high specific 
stiffness, low thermal expansion coefficient and 
high wear resistance [1,2]. In particular, aluminium-
based MMCs have gained extensive applications in 
automotive and aerospace industries due to their specific 
characteristics. Silicon carbide (SiC) has become the 
main type of reinforcement used for these materials. 
SiC exhibits good thermal conductivity and chemical 
compatibility with aluminium, creating a strong bond 
between particle and matrix [2-5]. MMCs can be 
fabricated via numerous processes mainly powder 
metallurgy and casting techniques. The casting process 
is a cost effective method while powder metallurgy is 
costly. Among the casting techniques, stir casting is the 
most frequently used route for production of particulate 
MMCs. However, it is associated with some inherent 
problems arising mainly from both the apparent non-
wettability of ceramic reinforcing particles by liquid 
aluminium alloys and the density differences between 
the two phases [6,7]. In order to overcome some of 
these drawbacks that result in non-uniform distribution 
of the reinforcement within the matrix alloy, extensive 
interfacial reactions, and formation of brittle phases at 
the particle/matrix interface as well as a high level of 
porosity new semi-solid processing techniques have 
been considered for manufacturing of these MMCs [8-
10]. 
Compcasting is a semi-solid processing route in 

which the ceramic reinforcing particulates are added 
to the semi-solid matrix alloy via mechanical stirring 
and then cast in a mold for solidification. This technique 
is superior because of its simplicity, flexibility and 
low cost, and is considered to be the best method for 
preparation of large quantities of composites at low cost 
[11,12].
From the available literatures on MMCs, it is obvious 

that the size, distribution and volume fraction of the 
reinforcement phase as well as the matrix properties are 
the main factors affecting the overall mechanical and 
physical properties [6,7,10,11]. 
One of the main challenges associated with the cast 

MMCs is to achieve a homogeneous distribution of 
reinforcement within the matrix alloy. In order to achieve 
the optimum properties of the MMCs, the distribution 
of the reinforcing particles in the matrix alloy should be 
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uniform and the porosity levels need to be minimized. 
A non-homogeneous particle distribution often arises 
as a result of agglomeration, settling, and segregation 
of ceramic particles during the processing of these 
composite materials. The particle distribution has 
a significant effect on the mechanical properties 
of MMCs. For example, clustered particles act as 
crack initiation sites and have a negative influence 
on the mechanical properties of composite materials. 
Clustered particle arrangements significantly reduce the 
failure strain of composites. To obtain a homogeneous 
distribution of reinforcing particles in the cast particulate 
MMCs, several factors such as the good wettability 
of the particles with the molten alloy, proper mixing, 
reinforcement size, reinforcement content, mold 
temperature and solidification rate should be considered 
[10,11,13-16]. 
The key processing parameters affecting the 

final microstructure of the solidified slurry during 
compocasting processing are stirring time, stirring 
temperature and stirring speed. From an industrial point 
of view, it is essential to find out the best combination of 
compocasting parameters to attain the best mechanical 
and physical properties.
In general, an experiment is an observation which 

leads to characteristic information about a studied 
object [17]. One of the most common and classical 
approaches employed by many experimenters is one-
factor-at-a-time (OFAT), in which one factor is varied 
while all other variables or factors in the experiment 
are fixed. The success of this approach depends on 
guesswork, luck, experience and intuition. Moreover, 
this type of experimentation requires large resources 
to obtain a limited amount of information about the 
process [17-21]. In many situations, in view of the high 
cost of experimentation, the number of observations is 
kept to a minimum [22-24]. With design of experiment 
(DOE) this number is kept as low as possible and the 
most informative combination of the factors is chosen 
[22,23]. Hence, DOE is an effective and economical 
solution. The aim of this so-called design is to optimize 
a process or system by performing each experiment and 
to draw conclusions about the significant behavior of 
the studied object from the results of the experiments. In 
recent years, the use of D-optimal design of experiment 
(DODE) in industrial experimentation has grown 
rapidly, due in part, to the fact that the methodology is 
now being introduced in standard DOE text books [19-
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21], and also because facilities for constructing DODE 
have become generally available.
On the other hand, unlike standard classical designs, 

such as factorials and fractional factorials, DODE is 
usually not orthogonal [17,18]. This type of design is 
always an option regardless of the type of model the 
experimenter wishes to fit (for example, first order, 
first order plus some interactions, full quadratic, cubic, 
etc.) or the objective specified for the experiment (for 
example, screening, response surface, etc.) [18]. DODE 
is straight optimization based on a chosen optimality 
criterion and the model that will be fit. The optimality 
criterion used in generating DODE results in minimizing 
the generalized variance of the parameter estimates 
for a pre-specified model. As a result, the 'optimality' 
of a given DODE is model dependent [17,18]. That is, 
the experimenter must specify a model for the design 
before the computer can generate the specific treatment 
combinations. Given the total number of treatment runs 
for an experiment and a specified model, the computer 
algorithm chooses the optimal set of design runs from 
a candidate set of possible design treatment runs. This 
candidate set of treatment runs usually consists of all 
possible combinations of various factor levels that one 
wishes to use in the experiment.
Although some researchers have already utilized DOE 

to optimize the different types of casting routes [24], no 
effort has yet been made to perform this optimization on 
the com-casting process. In the present work, an attempt 
has been made to develop a model for predicting the 
uniformity in SiC particle within the matrix as a function 
of key input parameters in the compocasting processing 
of A356-SiCp composites.

2. Experimental 

2.1. Materials and experimental procedure  

Al-A356 with a nominal chemical composition, as 
given in Table 1, formed the matrix and SiC particles 
(average size 20 µm) with 5, 10 and 15 % volume 
fractions were used as the reinforcement phase. A356 
aluminium alloy is a hypoeutectic Al-Si alloy and its 
relatively broad semisolid interval (32 °C) makes it 
suitable for semisolid processing. The SEM micrograph 
of the SiC powder is shown in Figure 1. SiC particles 
were artificially oxidized in air at 1000 ºC for 120 min 
to allow a layer of SiO2 to form on them and improve 
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their wettability with molten aluminium. This treatment 
helps the incorporation of the particles while reducing 
undesired interfacial reactions [11].

Table 1. Chemical composition (wt %) of A356 Alloy.

Si Mg Mn Zn Cu Fe Al

6.93 0.38 0.23 0.26 0.25 0.11 Balance

 

 

Fig. 1. SEM image of SiC particles.

The aluminium alloy matrix composites were 
synthesized by the compocasting method. Figure 2a 
shows a schematic representation of the compocasting 
apparatus used in this study. In the first stage, 1 kg of 
A356 aluminium alloy was put in a graphite crucible 
and melted at 750 °C by an electric resistance furnace. 
Two calibrated thermocouples were inserted into the 
melt and the furnace to measure their temperatures. SiC 
particles were preheated at 600 °C in a stainless steel 
crucible. Given density values for Al and SiC (2.7 and 
3.2 g/cm3), the crucible charge was determined to obtain 
the A356-SiCp composite samples with different SiC 
contents. The semi-solid stirring process was carried out 
by a graphite impeller (Figure 2b) [25] at temperatures 
of 590, 600 and 610 °C for 10, 20 and 30 min. Three 
different stirring speeds of 200, 400 and 600 rpm were 
also utilized. In the last stage, the slurry was heated up 
to 660 °C and stirred at this temperature for another 
8 min. Casting was done in a cylindrical shaped steel 
mold (40 mm internal diameter and 30 mm in height), 
preheated at 400 °C.
The prepared samples were subjected to standard 

metallographic procedures and examined via an 
“Olympus-BX60M” light microscope.
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	 	 	 	 	 	       (2)

where b0, bi, bii, bij are the constant, linear, square and 
interaction regression coefficient terms, respectively, 
and xi and xj are the independent factors (A, B, C or D). 
Design-Expert 7 (State-Ease, Inc., Trial version) 

software was used for multiple regression analysis, 
analysis of variance (ANOVA), and analysis of ridge 
maximum of data in the response surface regression 
(RSREG) procedure. The goodness of fit of the model 
was evaluated by the coefficient of determination R2 and 
its statistical significance was checked by the F-test.

3. Results and discussions 

This study demonstrates the effect of stirring speed, 
stirring time, stirring temperature and SiC content for 
the optimization of the compocasting route. Hence, the 
knowledge about the process is relatively limited, and 
the design is used to obtain 38 design points within 
the whole range of four factors for experiments. The 
designs and the response (DF (Y)) are given in Table 
3. Following the experiments, the response surface is 
approximated by DODE.
The results of the DODE are presented in an ANOVA 

table (Table 4) with a confidence interval (CI) of 95% 
(P < 0.05) for the model. In statistics, CI is a kind of 
interval estimate of a population parameter and is used 
to indicate the reliability of an estimate. The level of 
confidence of CI would indicate the probability that the 
confidence range captures this true population parameter 
given a distribution of samples [17-21]. By considering 
a half normal plot and a normal plot (not shown here), 
four main effects and their squares all with CI = 95% 
were selected as significant factors for modeling. The 
effect of a factor is defined as the change in response 
produced by a change in the level of a factor. This 

 

 
Fig. 2. (a) Schematic representation of the compocasting apparatus 
and (b) graphite impeller used in this study.

The distribution of the SiC particles within the matrix 
alloy was characterized by calculating the distribution 
factor (DF) defined by Eq. (1) [26].
                                                                                                            
DF	 	 	 	 	 	       (1)                                                        

in which Af is the mean value of the area fraction of 
the SiC particles measured on 100 fields of a sample 
and S.D. is its standard deviation. A non-uniform 
microscopic distribution of the reinforcing phase within 
a sample is reflected as a relatively high value of DF.

2.2. Experimental design and statistical analysis

To explore the effect of the operation factors on the 
response (DF) in the region of investigation, a DODE 
at three levels was performed. Stirring speed (rpm, A), 
stirring time (min, B), stirring temperature (°C, C) and 
SiC content (vol %, D) were selected as independent 
factors. The range of values and coded levels of the 
factors are given in Table 2.
A polynomial equation (Eq. 2) was used to predict the 
response (DF, Y) as a function of independent factors 
and their interactions. An interaction is the failure of the 
one factor to produce the same effect on the response at 
different levels of another factor [20]. In this work, there 
were four independent factors; therefore, the response 
for the quadratic polynomials becomes:

fA
DSDF ..

=

Table 2. Independent Factors and their Levels for DODE of 
compocasting process.

Independent factors Unit level

-1 0 1

Stirring speed (A) rpm 200 400 600

Stirring time (B) min 10 20 30

Stirring temperature (C) °C 590 600 610

SiC content (D) vol % 5 10 15

∑ ∑ ∑∑+++= jiiiiiiii xxxxY ββββ 2
0

∑ ∑ ∑∑+++= jiiiiiiii xxxxY ββββ 2
0
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Table 3. DODE tests and the response for compocasting process.

Standard Order Run Order Factor 1
A

Factor 2
B

Factor 3
C

Factor 4
D

Response DF
(by Experiment)

1 26 200 20 600 5 0.47

2 28 600 30 610 10 0.52

3 8 200 10 590 15 0.51

4 15 600 20 610 5 0.41

5 7 400 30 610 15 0.28

6 25 200 30 610 10 0.34

7 22 400 10 600 15 0.52

8 29 600 30 600 5 0.44

9 13 200 20 600 15 0.34

10 33 600 20 590 5 0.66

11 32 200 20 590 15 0.40

12 34 600 20 610 15 0.36

13 18 200 30 610 15 0.35

14 31 200 20 590 10 0.65

15 19 200 10 600 15 0.41

16 23 600 10 610 15 0.60

17 3 200 10 610 15 0.67

18 17 200 30 610 5 0.64

19 27 200 10 600 5 0.65

20 24 600 10 600 10 0.50

21 12 200 10 600 10 0.59

22 35 600 30 590 15 0.22

23 9 400 30 590 15 0.17

24 6 400 20 610 15 0.46

25 2 400 30 610 15 0.40

26 37 600 20 590 10 0.35

27 30 400 30 600 5 0.39

28 36 400 20 600 10 0.42

29 38 400 30 600 10 0.33

30 20 200 30 590 5 0.41

31 5 400 10 610 5 0.65

32 16 400 10 590 10 0.41

33 11 400 10 610 10 0.60

34 1 400 20 590 5 0.38

35 14 400 10 590 5 0.48

36 4 200 30 590 15 0.29

37 10 200 10 590 5 0.55

38 21 200 10 590 10 0.48
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(residuals) degree of freedom. To categorize the 
parameter or the model as a significant value, calculated 
F-value must be more than its value in the statistical 
tables. If the calculated value of F is greater than that in 
the F table at a specified probability level, a statistically 
significant factor or interaction is obtained [20]. The 
lack of fit of the F-value for the response showed that 
the lack of fit is not significant (p > 0.05) relative to the 
pure error. This model (Eq. (3)) can be used to navigate 
the design space.
The quadratic regression coefficients obtained by 

employing a least squares method technique to predict 
quadratic polynomial models for the DF (Y) are given 
as Eq. (3). For Y, the linear term and the quadratic 
terms (without interaction terms) of A, B, C and D were 
significant (P < 0.05).
Sum of squares (SS) of each factor quantifies its 

importance in the process and as the value of the SS 
increases the significance of the corresponding factor 
in the undergoing process also increases. As shown 
in ANOVA table (Table. 4), the effect of C (stirring 
temperature) is the strongest and then B, D, A2 and 
A, respectively. If we consider the model equation in 
actual terms, one can find that the effect of A2 and C is 
positive (synergistic effect). However, A, B and D have 
a negative (antagonism) effect on DF. To decrease DF, 
the positive effect should be descending and negative 
effect should be ascending.
Significant factors in the fitted model (Eq. (3)) were 

chosen as the axes for the 3D surface plots (Figures 
3a and 4a) and contour plots (Figures 3b and 4b). In a 
contour plot (base plots in the 3D plots), curves of equal 
response values are drawn on a plane whose coordinates 
represent the levels of the independent factors. Each 
contour represents a specific value for the height of the 

is frequently called a main effect because it refers to 
primary factors of interest in the experiment [21].
ANOVA results for DF show a significant model 

with adequate precision of 61.818. Adequate precision 
compares the range of the predicted values at the design 
points to the average prediction error; on the other hand, 
adequate precision measures the signal to noise ratio and 
a ratio greater than 4 is desirable [18]. Here, the value of 
the ratio is greater than 4, so it represents an adequate 
model (Eq. (3)) for predicting the results within the 
design space without doing any further experiments. 

Y=0.42_0.030A_0.037B+0.11C_0.069D+0.070A2      (3)

The quality of fittings of the equations was expressed 
by the coefficient of regression "Adjusted R-squared" 
or in a better way by "Predicted R-squared". The 
"Adjusted R-squared" values indicate variability in the 
observed response values which can be explained by the 
experimental factors and their interactions. The closer 
"Predicted R-Squared" and "Adjusted R-Squared" 
values are to 1, the better the fit [27]. The "Predicted 
R-squared" of 0.9684 is in reasonable agreement with 
the "Adjusted R-squared" of 0.9743. The model F-value 
of 281.69 implies that the model is significant (Fmodel 

= 281.69 >> Ftable (5,32) = 2.530) and there is only a 
0.01% chance that a "Model F-value" could occur due 
to noise. F-value is the test for comparing the variance 
associated with that term with the residual variance. It is 
the mean square for a term divided by the mean square 
for the residual. This term should be as large as possible 
[18]. Tables of F-value (a,b) for different confidence 
intervals exist in statistical references [17]. Where, the 
first number in parenthesis is the parameter or model 
degree of freedom and the second one is the error’s 

Table 4. ANOVA with CI = 95% for model and factors.

Source Sum of squares Degree of freedom Mean square F value P-value Prob> F

Model 0.60 5 0.12 281.69 <0.0001 Significant

A 0.019 1 0.019 45.71 <0.0001

B 0.14 1 0.14 327.98 <0.0001

C 0.29 1 0.29 687.10 <0.0001

D 0.12 1 0.12 292.61 <0.0001

A2 0.040 1 0.040 93.53 <0.0001

Residual 0.014 32 0.0004261

Corrected Total 0.61 37
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Fig. 3. a) Response surface and b) contour plots for the effect of the 
stirring time and stirring speed on the DF.

 

 

Fig. 4. a) Response surface and b) contour plots for the effect of the 
stirring temperature and SiC content on the DF. 

 

surface above the plane defined for a combination of the 
levels of the factors. 
From Figures 3 and 4, DF decreases by decreasing 

the amount of stirring temperature and increasing the 
amount of SiC content and stirring time. On the other 
hand, the relationship between the stirring speed and DF 
was almost parabolic. This trend is in good agreement 
with the trend of factor effects. The observed values 
were reasonably close to the predicted ones as shown 
in Figure 5.

 

 
Fig. 5. Predicted vs. actual plot of DF.

The normality of the data can be checked by plotting 
a normal probability plot of the residuals. If the data 
points on the plot fall fairly close to a straight line, 
then the data are normally distributed [21]. The normal 
probability plot of the residuals for SF (not shown 
here) depicted that the data points were fairly close to 
the straight line and this indicates that the experiments 
come from a normally distributed population.
The confirmation experiments were conducted in 

three different conditions. The results are listed in Table 
5. If the average of the results of the confirmation is 
within the limits of the CI, then the significant factors as 
well as the appropriate levels for obtaining the desired 
results are properly chosen [17-21]. From Table 5, the 
experimental responses are in 95% CI range and this 
model can be used to navigate within the design space.
In order to test the validity of the optimized conditions 

given by the model, an experiment was also carried 
out with parameters as suggested by the model. The 
conditions used in the confirmatory experiment are given 
in Table 6. The DF value at the optimal condition was 
found to be 0.16 (Table 6), which is consistent with the 
model. Therefore, the formulated model is acceptably 
valid. It should be noted that the smaller value of DF 
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is indicative of the more uniform distribution of the SiC 
particles in the matrix [11]. Figure 6 demonstrates the 
optical micrographs of the composite samples fabricated 
by different compocasting process parameters and SiC 
contends for confirmation and optimal condition tests.
Figure 3 shows that DF of the SiC particles decreases 

with increasing the semisolid stirring time, representing 
a more homogenous SiC distribution within the matrix. 
At lower stirring time (10 min), in some zones the 
matrix is free from SiC particles and in other regions 
clustering of the SiC particles is visible. This shows 
that this stirring time is insufficient for obtaining an 

acceptable SiC distribution in the matrix. Higher stirring 
time results in a better distribution of the particles. From 
Figure  4, it can be seen that decreased stirring temperature 
resulted in a more homogeneous distribution of these 
particles within the matrix, as indicated by smaller DF 
values. This means that by increasing the semisolid 
stirring temperature, a less homogeneous distribution 
of the SiC particles is obtained in the matrix alloy. 
Decreasing the stirring temperature from 610 to 590 °C 
(at the fixed stirring speed and stirring time of 400 rpm 
and 20 min, respectively) leads to a 45% decrease in the 
DF value, which is attributed to the increased viscosity 
of the semisolid slurry. According to the equilibrium 
binary Al-Si diagram, A356 aluminium alloy solidifies 
at a broad temperature interval (32 °C) between 583 
to 615 °C.  This alloy consists of 45%, 35% and 18% 
solid fractions in semisolid slurry at 590, 600 and 610 
°C, respectively [28]. This shows that the viscosity 
of the alloy increases as the semisolid temperature 
decreases. The restricted movement of the particles 
within the slurry during semisolid stirring prevents 
the SiC particles from settling as a consequence of the 
increased effective viscosity; consequently, a more 
uniform particle distribution is obtained. The presence 
of a solid phase in the semisolid slurry can also help the 
breakdown of the SiC clusters during stirring.
The results of this study show a remarkable 

improvement in the uniformity of the SiC particle 
distribution (as reflected by the decreased DF) when 
the stirring speed of 500 rpm was used (Figure 3 and 
Table 6). Particle clustering is observable at a relatively 

Table 5. Results of confirmation tests.

Stirring speed (rpm) Stirring time (min) Stirring temperature (°C) SiC content (vol. %) DF

1 Model 400 20 590 10 0.30

Confirmation test 0.32

2 Model 200 30 600 5 0.51

Confirmation test 0.53

3 Model 400 20 610 10 0.53

Confirmation test 0.52

Table 6. DF at optimal conditions.

Parameter Stirring speed Stirring time Stirring temperature SiC content DF

Model 500 rpm 30 min 590 °C 15 vol % 0.16

Confirmation test 0.19

Fig. 6. Optical micrographs of the A356-SiCp composites fabricated 
by the different compocasting process parameters and SiC contents 
(a-c) confirmation tests and (d) at optimal condition.
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low stirring speed (i.e. 200 rpm), and in some regions 
the matrix is free of SiC particles (Figure 6b). By 
increasing the stirring speed to 500 rpm, a better 
distribution of the SiC particles within the matrix 
alloy is obtainable. These results are in agreement with 
some related studies [10,12], and can be attributed to 
the increase of shear forces applied by increasing the 
stirring speed, which can improve the uniformity of the 
SiC particle distribution as a result of a larger vortex 
within the slurry. On the other hand, the higher stirring 
speed (from 500 to 600 rpm) imposed a considerable 
non-uniformity in the SiC particle distribution, which 
can be attributed to the increased agitation severity of 
the slurry, resulting in clustering of the SiC particles.
The effect of the SiC content on the uniformity of the 

particles distribution within the matrix is given in Figure 
4. From this figure, improvement in the uniformity 
of the SiC particle distribution is obtainable when the 
particle content increases. This can be attributed to the 
(a) restricted movement of particles within the melt 
during solidification as a consequence of the increased 
effective viscosity of the slurry and (b) finer matrix 
microstructure as a result of increased barriers for 
growth of α-Al phase.

4. Conclusion

Compocasting processing of Al-A356-SiCp 

composites was studied and modeled using the 
D-optimal design of experiment (DODE). The effects of 
compocasting process parameters (stirring temperature, 
stirring time and stirring speed) as well as SiC content 
on the uniformity in the particle distribution were 
investigated. The conclusions drawn from the results 
can be summarized as follows:
1. The optimum values of stirring temperature, stirring 
time and stirring speed were found to be 590 °C, 30 
min and 500 rpm, respectively.

2. The correlation coefficient (R2) of the regression 
model was 0.97, which confirms the excellent 
accuracy of the model.

3. The most important factor affecting the SiC 
distribution within the matrix alloy was found to be 
the stirring temperature.

4. The uniformity in the SiC distribution improved 
by increasing the SiC content and stirring time and 
decreasing the stirring temperature. A remarkable 
improvement in the uniformity of the SiC particle 

distribution was achieved when the stirring speed of 
500 rpm was used.
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