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•	 Compocasting	processing	of		A356-
SiCp	composites	was	studied.

•	 Simultaneous	 effects	 of	 process	
parameters	 on	 SiC	 distribution	
were	studied.

•	 D-optimal	 design	 of	 experiment	
was	used	for	optimization.
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This	 paper	 presents	 an	 experimental	 design	 approach	 to	 the	 process	 parameter	
optimization	for	compocasting	of	A356-SiCp	composites.	Toward	this	end,	parameters	of	
stirring	temperature,	stirring	time,	stirring	speed	and	SiC	content	were	chosen	and	three	
levels	of	these	parameters	were	considered.	The	D-optimal	design	of	experiment	(DODE)	
was	employed	for	experimental	design	and	analysis	of	results.	In	the	experimental	stage,	
different	20	µm-sized	SiC	particle	contents	(5,	10	and	15	vol	%)	were	introduced	into	
semisolid-state	A356	aluminium	alloy.	Semisolid	stirring	was	carried	out	at	temperatures	
of	590,	600	and	610	°C	with	stirring	speeds	of	200,	400	and	600	rpm	for	10,	20	and	30	
min.	The	effect	of	these	parameters	on	the	distribution	of	the	SiC	particles	within	the	
matrix,	represented	by	distribution	factor	(DF),	was	investigated.	The	smaller	value	of	
DF	is	indicative	of	the	more	uniform	distribution	of	the	SiC	particles	in	the	matrix.	It	
was	observed	that	the	SiC	particle	content	of	15	vol	%,	stirring	temperature	of	590	°C,	
stirring	 speed	 of	 500	 rpm,	 and	 stirring	 time	of	 30	min	were	 the	 optimum	parameter	
values	producing	the	best	distribution	of	the	SiC	particles	in	the	matrix.	The	statistical	
test	revealed	that	the	main	effect	of	the	stirring	temperature	is	the	most	significant	factor.	
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1. Introduction

It	is	well	known	that	metal	matrix	composites	(MMCs)	
are	characterized	by	high	specific	strength,	high	specific	
stiffness,	 low	 thermal	 expansion	 coefficient	 and	
high	 wear	 resistance	 [1,2].	 In	 particular,	 aluminium-
based	 MMCs	 have	 gained	 extensive	 applications	 in	
automotive	and	aerospace	industries	due	to	their	specific	
characteristics.	 Silicon	 carbide	 (SiC)	 has	 become	 the	
main	 type	 of	 reinforcement	 used	 for	 these	 materials.	
SiC	 exhibits	 good	 thermal	 conductivity	 and	 chemical	
compatibility	with	 aluminium,	 creating	 a	 strong	 bond	
between	 particle	 and	 matrix	 [2-5].	 MMCs	 can	 be	
fabricated	 via	 numerous	 processes	 mainly	 powder	
metallurgy	and	casting	techniques.	The	casting	process	
is	a	cost	effective	method	while	powder	metallurgy	is	
costly.	Among	the	casting	techniques,	stir	casting	is	the	
most	frequently	used	route	for	production	of	particulate	
MMCs.	However,	 it	 is	 associated	with	 some	 inherent	
problems	 arising	mainly	 from	 both	 the	 apparent	 non-
wettability	 of	 ceramic	 reinforcing	 particles	 by	 liquid	
aluminium	alloys	and	 the	density	differences	between	
the	 two	 phases	 [6,7].	 In	 order	 to	 overcome	 some	 of	
these	drawbacks	that	result	in	non-uniform	distribution	
of	the	reinforcement	within	the	matrix	alloy,	extensive	
interfacial	reactions,	and	formation	of	brittle	phases	at	
the	particle/matrix	 interface	as	well	as	a	high	 level	of	
porosity	 new	 semi-solid	 processing	 techniques	 have	
been	considered	for	manufacturing	of	these	MMCs	[8-
10].	
Compcasting	 is	 a	 semi-solid	 processing	 route	 in	

which	 the	 ceramic	 reinforcing	 particulates	 are	 added	
to	 the	 semi-solid	matrix	 alloy	 via	mechanical	 stirring	
and	then	cast	in	a	mold	for	solidification.	This	technique	
is	 superior	 because	 of	 its	 simplicity,	 flexibility	 and	
low	cost,	 and	 is	 considered	 to	be	 the	best	method	 for	
preparation	of	large	quantities	of	composites	at	low	cost	
[11,12].
From	the	available	literatures	on	MMCs,	it	is	obvious	

that	 the	 size,	 distribution	 and	 volume	 fraction	 of	 the	
reinforcement	phase	as	well	as	the	matrix	properties	are	
the	main	 factors	 affecting	 the	 overall	mechanical	 and	
physical	properties	[6,7,10,11].	
One	of	 the	main	challenges	associated	with	 the	cast	

MMCs	 is	 to	 achieve	 a	 homogeneous	 distribution	 of	
reinforcement	within	the	matrix	alloy.	In	order	to	achieve	
the	optimum	properties	of	the	MMCs,	the	distribution	
of	the	reinforcing	particles	in	the	matrix	alloy	should	be	
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uniform	and	the	porosity	levels	need	to	be	minimized.	
A	 non-homogeneous	 particle	 distribution	 often	 arises	
as	 a	 result	of	 agglomeration,	 settling,	 and	 segregation	
of	 ceramic	 particles	 during	 the	 processing	 of	 these	
composite	 materials.	 The	 particle	 distribution	 has	
a	 significant	 effect	 on	 the	 mechanical	 properties	
of	 MMCs.	 For	 example,	 clustered	 particles	 act	 as	
crack	 initiation	 sites	 and	 have	 a	 negative	 influence	
on	 the	 mechanical	 properties	 of	 composite	 materials.	
Clustered	particle	arrangements	significantly	reduce	the	
failure	strain	of	composites.	To	obtain	a	homogeneous	
distribution	of	reinforcing	particles	in	the	cast	particulate	
MMCs,	 several	 factors	 such	 as	 the	 good	 wettability	
of	 the	 particles	with	 the	molten	 alloy,	 proper	mixing,	
reinforcement	 size,	 reinforcement	 content,	 mold	
temperature	and	solidification	rate	should	be	considered	
[10,11,13-16].	
The	 key	 processing	 parameters	 affecting	 the	

final	 microstructure	 of	 the	 solidified	 slurry	 during	
compocasting	 processing	 are	 stirring	 time,	 stirring	
temperature	and	stirring	speed.	From	an	industrial	point	
of	view,	it	is	essential	to	find	out	the	best	combination	of	
compocasting	parameters	to	attain	the	best	mechanical	
and	physical	properties.
In	 general,	 an	 experiment	 is	 an	 observation	 which	

leads	 to	 characteristic	 information	 about	 a	 studied	
object	 [17].	 One	 of	 the	 most	 common	 and	 classical	
approaches	 employed	 by	many	 experimenters	 is	 one-
factor-at-a-time	(OFAT),	 in	which	one	factor	 is	varied	
while	 all	 other	 variables	 or	 factors	 in	 the	 experiment	
are	 fixed.	 The	 success	 of	 this	 approach	 depends	 on	
guesswork,	 luck,	 experience	 and	 intuition.	Moreover,	
this	 type	 of	 experimentation	 requires	 large	 resources	
to	 obtain	 a	 limited	 amount	 of	 information	 about	 the	
process	[17-21].	In	many	situations,	in	view	of	the	high	
cost	of	experimentation,	the	number	of	observations	is	
kept	to	a	minimum	[22-24].	With	design	of	experiment	
(DOE)	this	number	 is	kept	as	 low	as	possible	and	the	
most	informative	combination	of	the	factors	is	chosen	
[22,23].	 Hence,	 DOE	 is	 an	 effective	 and	 economical	
solution.	The	aim	of	this	so-called	design	is	to	optimize	
a	process	or	system	by	performing	each	experiment	and	
to	 draw	 conclusions	 about	 the	 significant	 behavior	 of	
the	studied	object	from	the	results	of	the	experiments.	In	
recent	years,	the	use	of	D-optimal	design	of	experiment	
(DODE)	 in	 industrial	 experimentation	 has	 grown	
rapidly,	due	in	part,	to	the	fact	that	the	methodology	is	
now	being	introduced	in	standard	DOE	text	books	[19-
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21],	and	also	because	facilities	for	constructing	DODE	
have	become	generally	available.
On	the	other	hand,	unlike	standard	classical	designs,	

such	 as	 factorials	 and	 fractional	 factorials,	 DODE	 is	
usually	not	orthogonal	 [17,18].	This	 type	of	design	 is	
always	 an	 option	 regardless	 of	 the	 type	 of	model	 the	
experimenter	 wishes	 to	 fit	 (for	 example,	 first	 order,	
first	order	plus	some	interactions,	full	quadratic,	cubic,	
etc.)	or	 the	objective	specified	for	 the	experiment	(for	
example,	screening,	response	surface,	etc.)	[18].	DODE	
is	 straight	 optimization	 based	 on	 a	 chosen	 optimality	
criterion	and	the	model	that	will	be	fit.	The	optimality	
criterion	used	in	generating	DODE	results	in	minimizing	
the	 generalized	 variance	 of	 the	 parameter	 estimates	
for	 a	pre-specified	model.	As	 a	 result,	 the	 'optimality'	
of	a	given	DODE	is	model	dependent	[17,18].	That	is,	
the	experimenter	must	 specify	a	model	 for	 the	design	
before	the	computer	can	generate	the	specific	treatment	
combinations.	Given	the	total	number	of	treatment	runs	
for	an	experiment	and	a	specified	model,	the	computer	
algorithm	chooses	the	optimal	set	of	design	runs	from	
a	candidate	set	of	possible	design	treatment	runs.	This	
candidate	 set	 of	 treatment	 runs	usually	 consists	 of	 all	
possible	combinations	of	various	factor	levels	that	one	
wishes	to	use	in	the	experiment.
Although	some	researchers	have	already	utilized	DOE	

to	optimize	the	different	types	of	casting	routes	[24],	no	
effort	has	yet	been	made	to	perform	this	optimization	on	
the	com-casting	process.	In	the	present	work,	an	attempt	
has	 been	made	 to	 develop	 a	model	 for	 predicting	 the	
uniformity	in	SiC	particle	within	the	matrix	as	a	function	
of	key	input	parameters	in	the	compocasting	processing	
of	A356-SiCp	composites.

2. Experimental 

2.1. Materials and experimental procedure  

Al-A356	 with	 a	 nominal	 chemical	 composition,	 as	
given	 in	Table	1,	 formed	 the	matrix	and	SiC	particles	
(average	 size	 20	 µm)	 with	 5,	 10	 and	 15	 %	 volume	
fractions	were	used	as	 the	 reinforcement	phase.	A356	
aluminium	 alloy	 is	 a	 hypoeutectic	Al-Si	 alloy	 and	 its	
relatively	 broad	 semisolid	 interval	 (32	 °C)	 makes	 it	
suitable	for	semisolid	processing.	The	SEM	micrograph	
of	the	SiC	powder	is	shown	in	Figure	1.	SiC	particles	
were	artificially	oxidized	in	air	at	1000	ºC	for	120	min	
to	allow	a	layer	of	SiO2	to	form	on	them	and	improve	
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their	wettability	with	molten	aluminium.	This	treatment	
helps	the	incorporation	of	the	particles	while	reducing	
undesired	interfacial	reactions	[11].

Table 1.	Chemical	composition	(wt	%)	of	A356	Alloy.

Si Mg Mn Zn Cu Fe Al

6.93 0.38 0.23 0.26 0.25 0.11 Balance

 

 

Fig. 1. SEM	image	of	SiC	particles.

The	 aluminium	 alloy	 matrix	 composites	 were	
synthesized	 by	 the	 compocasting	 method.	 Figure	 2a	
shows	a	schematic	representation	of	the	compocasting	
apparatus	used	in	this	study.	In	the	first	stage,	1	kg	of	
A356	 aluminium	 alloy	was	 put	 in	 a	 graphite	 crucible	
and	melted	at	750	°C	by	an	electric	resistance	furnace.	
Two	 calibrated	 thermocouples	 were	 inserted	 into	 the	
melt	and	the	furnace	to	measure	their	temperatures.	SiC	
particles	were	preheated	at	600	°C	 in	a	 stainless	 steel	
crucible.	Given	density	values	for	Al	and	SiC	(2.7	and	
3.2	g/cm3),	the	crucible	charge	was	determined	to	obtain	
the	A356-SiCp	 composite	 samples	 with	 different	 SiC	
contents.	The	semi-solid	stirring	process	was	carried	out	
by	a	graphite	impeller	(Figure	2b)	[25]	at	temperatures	
of	590,	600	and	610	°C	for	10,	20	and	30	min.	Three	
different	stirring	speeds	of	200,	400	and	600	rpm	were	
also	utilized.	In	the	last	stage,	the	slurry	was	heated	up	
to	 660	 °C	 and	 stirred	 at	 this	 temperature	 for	 another	
8	min.	Casting	was	done	 in	a	cylindrical	 shaped	steel	
mold	(40	mm	internal	diameter	and	30	mm	in	height),	
preheated	at	400	°C.
The	 prepared	 samples	 were	 subjected	 to	 standard	

metallographic	 procedures	 and	 examined	 via	 an	
“Olympus-BX60M”	light	microscope.
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	 	 	 	 	 	 						(2)

where	b0,	bi, bii,	bij	are	the	constant,	linear,	square	and	
interaction	 regression	 coefficient	 terms,	 respectively,	
and	xi	and	xj	are	the	independent	factors	(A,	B,	C	or	D).	
Design-Expert	 7	 (State-Ease,	 Inc.,	 Trial	 version)	

software	 was	 used	 for	 multiple	 regression	 analysis,	
analysis	 of	 variance	 (ANOVA),	 and	 analysis	 of	 ridge	
maximum	 of	 data	 in	 the	 response	 surface	 regression	
(RSREG)	procedure.	The	goodness	of	fit	of	the	model	
was	evaluated	by	the	coefficient	of	determination	R2	and	
its	 statistical	 significance	was	 checked	 by	 the	 F-test.

3. Results and discussions 

This	study	demonstrates	 the	effect	of	stirring	speed,	
stirring	 time,	 stirring	 temperature	and	SiC	content	 for	
the	optimization	of	the	compocasting	route.	Hence,	the	
knowledge	about	the	process	is	relatively	limited,	and	
the	 design	 is	 used	 to	 obtain	 38	 design	 points	 within	
the	whole	 range	 of	 four	 factors	 for	 experiments.	The	
designs	 and	 the	 response	 (DF (Y))	 are	 given	 in	Table	
3.	 Following	 the	 experiments,	 the	 response	 surface	 is	
approximated	 by	 DODE.
The	results	of	the	DODE	are	presented	in	an	ANOVA	

table	(Table	4)	with	a	confidence	interval	(CI)	of	95%	
(P	<	0.05)	 for	 the	model.	 In	statistics,	CI	 is	a	kind	of	
interval	estimate	of	a	population	parameter	and	is	used	
to	 indicate	 the	 reliability	 of	 an	 estimate.	The	 level	 of	
confidence	of	CI	would	indicate	the	probability	that	the	
confidence	range	captures	this	true	population	parameter	
given	a	distribution	of	samples	[17-21].	By	considering	
a	half	normal	plot	and	a	normal	plot	(not	shown	here),	
four	main	effects	and	their	squares	all	with	CI	=	95%	
were	 selected	as	 significant	 factors	 for	modeling.	The	
effect	of	a	 factor	 is	defined	as	 the	change	 in	 response	
produced	 by	 a	 change	 in	 the	 level	 of	 a	 factor.	 This	

 

 
Fig. 2.	(a)	Schematic	representation	of	the	compocasting	apparatus	
and	(b)	graphite	impeller	used	in	this	study.

The	distribution	of	the	SiC	particles	within	the	matrix	
alloy	was	characterized	by	calculating	the	distribution	
factor	(DF)	defined	by	Eq.	(1)	[26].
																																																																																																												
DF	 	 	 	 	 	 						(1)																																																								

in	which	Af	 is	 the	mean	 value	 of	 the	 area	 fraction	 of	
the	SiC	 particles	measured	 on	 100	fields	 of	 a	 sample	
and	 S.D.	 is	 its	 standard	 deviation.	 A	 non-uniform	
microscopic	distribution	of	the	reinforcing	phase	within	
a	sample	is	reflected	as	a	relatively	high	value	of	DF.

2.2. Experimental design and statistical analysis

To	explore	 the	 effect	 of	 the	operation	 factors	on	 the	
response	(DF)	in	the	region	of	investigation,	a	DODE	
at	three	levels	was	performed.	Stirring	speed	(rpm,	A),	
stirring	time	(min,	B),	stirring	temperature	(°C,	C)	and	
SiC	 content	 (vol	%,	D)	were	 selected	 as	 independent	
factors.	 The	 range	 of	 values	 and	 coded	 levels	 of	 the	
factors	are	given	in	Table	2.
A	polynomial	equation	(Eq.	2)	was	used	to	predict	the	
response	(DF,	Y)	as	a	 function	of	 independent	 factors	
and	their	interactions.	An	interaction	is	the	failure	of	the	
one	factor	to	produce	the	same	effect	on	the	response	at	
different	levels	of	another	factor	[20].	In	this	work,	there	
were	four	 independent	factors;	 therefore,	 the	response	
for	the	quadratic	polynomials	becomes:

fA
DSDF ..

=

Table 2.	 Independent	 Factors	 and	 their	 Levels	 for	 DODE	 of	
compocasting	 process.

Independent	factors Unit level

-1 0 1

Stirring	speed	(A) rpm	 200 400 600

Stirring	time	(B) min	 10 20 30

Stirring	temperature	(C) °C 590 600 610

SiC	content	(D) vol	% 5 10 15

∑ ∑ ∑∑+++= jiiiiiiii xxxxY ββββ 2
0

∑ ∑ ∑∑+++= jiiiiiiii xxxxY ββββ 2
0
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Table 3.	DODE	tests	and	the	response	for	compocasting	process.

Standard	Order Run	Order Factor	1
A

Factor	2
B

Factor	3
C

Factor	4
D

Response	DF
(by	Experiment)

1 26 200 20 600 5 0.47

2 28 600 30 610 10 0.52

3 8 200 10 590 15 0.51

4 15 600 20 610 5 0.41

5 7 400 30 610 15 0.28

6 25 200 30 610 10 0.34

7 22 400 10 600 15 0.52

8 29 600 30 600 5 0.44

9 13 200 20 600 15 0.34

10 33 600 20 590 5 0.66

11 32 200 20 590 15 0.40

12 34 600 20 610 15 0.36

13 18 200 30 610 15 0.35

14 31 200 20 590 10 0.65

15 19 200 10 600 15 0.41

16 23 600 10 610 15 0.60

17 3 200 10 610 15 0.67

18 17 200 30 610 5 0.64

19 27 200 10 600 5 0.65

20 24 600 10 600 10 0.50

21 12 200 10 600 10 0.59

22 35 600 30 590 15 0.22

23 9 400 30 590 15 0.17

24 6 400 20 610 15 0.46

25 2 400 30 610 15 0.40

26 37 600 20 590 10 0.35

27 30 400 30 600 5 0.39

28 36 400 20 600 10 0.42

29 38 400 30 600 10 0.33

30 20 200 30 590 5 0.41

31 5 400 10 610 5 0.65

32 16 400 10 590 10 0.41

33 11 400 10 610 10 0.60

34 1 400 20 590 5 0.38

35 14 400 10 590 5 0.48

36 4 200 30 590 15 0.29

37 10 200 10 590 5 0.55

38 21 200 10 590 10 0.48
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(residuals)	 degree	 of	 freedom.	 To	 categorize	 the	
parameter	or	the	model	as	a	significant	value,	calculated	
F-value	must	 be	more	 than	 its	 value	 in	 the	 statistical	
tables.	If	the	calculated	value	of	F	is	greater	than	that	in	
the	F	table	at	a	specified	probability	level,	a	statistically	
significant	 factor	 or	 interaction	 is	 obtained	 [20].	 The	
lack	of	fit	of	the	F-value	for	the	response	showed	that	
the	lack	of	fit	is	not	significant	(p	>	0.05)	relative	to	the	
pure	error.	This	model	(Eq.	(3))	can	be	used	to	navigate	
the	design	space.
The	 quadratic	 regression	 coefficients	 obtained	 by	

employing	a	least	squares	method	technique	to	predict	
quadratic	polynomial	models	for	the	DF	(Y)	are	given	
as	 Eq.	 (3).	 For	 Y,	 the	 linear	 term	 and	 the	 quadratic	
terms	(without	interaction	terms)	of	A,	B,	C	and	D	were	
significant	(P	<	0.05).
Sum	 of	 squares	 (SS)	 of	 each	 factor	 quantifies	 its	

importance	 in	 the	 process	 and	 as	 the	 value	 of	 the	SS	
increases	 the	 significance	 of	 the	 corresponding	 factor	
in	 the	 undergoing	 process	 also	 increases.	 As	 shown	
in	ANOVA	 table	 (Table.	 4),	 the	 effect	 of	C	 (stirring	
temperature)	 is	 the	 strongest	 and	 then	 B,	 D,	 A2	 and	
A,	 respectively.	 If	we	 consider	 the	model	 equation	 in	
actual	terms,	one	can	find	that	the	effect	of	A2	and	C	is	
positive	(synergistic	effect).	However,	A,	B	and	D	have	
a	negative	(antagonism)	effect	on	DF.	To	decrease	DF,	
the	positive	 effect	 should	be	descending	and	negative	
effect	should	be	ascending.
Significant	factors	in	the	fitted	model	(Eq.	(3))	were	

chosen	 as	 the	 axes	 for	 the	 3D	 surface	 plots	 (Figures	
3a	and	4a)	and	contour	plots	(Figures	3b	and	4b).	In	a	
contour	plot	(base	plots	in	the	3D	plots),	curves	of	equal	
response	values	are	drawn	on	a	plane	whose	coordinates	
represent	 the	 levels	 of	 the	 independent	 factors.	 Each	
contour	represents	a	specific	value	for	the	height	of	the	

is	 frequently	 called	 a	main	 effect	 because	 it	 refers	 to	
primary	 factors	 of	 interest	 in	 the	 experiment	 [21].
ANOVA	 results	 for	 DF	 show	 a	 significant	 model	

with	adequate	precision	of	61.818.	Adequate	precision	
compares	the	range	of	the	predicted	values	at	the	design	
points	to	the	average	prediction	error;	on	the	other	hand,	
adequate	precision	measures	the	signal	to	noise	ratio	and	
a	ratio	greater	than	4	is	desirable	[18].	Here,	the	value	of	
the	ratio	is	greater	than	4,	so	it	represents	an	adequate	
model	 (Eq.	 (3))	 for	 predicting	 the	 results	 within	 the	
design	space	without	doing	any	further	experiments.	

Y=0.42_0.030A_0.037B+0.11C_0.069D+0.070A2						(3)

The	quality	of	fittings	of	the	equations	was	expressed	
by	 the	 coefficient	 of	 regression	 "Adjusted	R-squared"	
or	 in	 a	 better	 way	 by	 "Predicted	 R-squared".	 The	
"Adjusted	R-squared"	values	indicate	variability	in	the	
observed	response	values	which	can	be	explained	by	the	
experimental	 factors	and	 their	 interactions.	The	closer	
"Predicted	 R-Squared"	 and	 "Adjusted	 R-Squared"	
values	are	 to	1,	 the	better	 the	fit	 [27].	The	 "Predicted	
R-squared"	of	0.9684	is	 in	reasonable	agreement	with	
the	"Adjusted	R-squared"	of	0.9743.	The	model	F-value	
of	 281.69	 implies	 that	 the	model	 is	 significant	 (Fmodel	

=	 281.69	>>	Ftable	 (5,32)	=	2.530)	 and	 there	 is	 only	 a	
0.01%	chance	that	a	"Model	F-value"	could	occur	due	
to	noise.	F-value	is	the	test	for	comparing	the	variance	
associated	with	that	term	with	the	residual	variance.	It	is	
the	mean	square	for	a	term	divided	by	the	mean	square	
for	the	residual.	This	term	should	be	as	large	as	possible	
[18].	 Tables	 of	 F-value	 (a,b)	 for	 different	 confidence	
intervals	exist	in	statistical	references	[17].	Where,	the	
first	 number	 in	 parenthesis	 is	 the	 parameter	 or	model	
degree	 of	 freedom	 and	 the	 second	 one	 is	 the	 error’s	

Table 4.	ANOVA	with	CI	=	95%	for	model	and	factors.

Source Sum	of	squares Degree	of	freedom Mean	square F	value P-value	Prob>	F

Model 0.60 5 0.12 281.69 <0.0001 Significant

A 0.019 1 0.019 45.71 <0.0001

B 0.14 1 0.14 327.98 <0.0001

C 0.29 1 0.29 687.10 <0.0001

D 0.12 1 0.12 292.61 <0.0001

A2 0.040 1 0.040 93.53 <0.0001

Residual 0.014 32 0.0004261

Corrected	Total 0.61 37
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Fig. 3.	a)	Response	surface	and	b)	contour	plots	for	the	effect	of	the	
stirring	time	and	stirring	speed	on	the	DF.

 

 

Fig. 4.	a)	Response	surface	and	b)	contour	plots	for	the	effect	of	the	
stirring	temperature	and	SiC	content	on	the	DF. 

 

surface	above	the	plane	defined	for	a	combination	of	the	
levels	of	the	factors.	
From	Figures	 3	 and	 4,	DF	 decreases	 by	 decreasing	

the	 amount	 of	 stirring	 temperature	 and	 increasing	 the	
amount	of	SiC	content	and	stirring	time.	On	the	other	
hand,	the	relationship	between	the	stirring	speed	and	DF	
was	almost	parabolic.	This	trend	is	in	good	agreement	
with	 the	 trend	 of	 factor	 effects.	 The	 observed	 values	
were	 reasonably	close	 to	 the	predicted	ones	as	shown	
in	Figure	5.

 

 
Fig. 5.	Predicted	vs.	actual	plot	of	DF.

The	normality	of	the	data	can	be	checked	by	plotting	
a	 normal	 probability	 plot	 of	 the	 residuals.	 If	 the	 data	
points	 on	 the	 plot	 fall	 fairly	 close	 to	 a	 straight	 line,	
then	the	data	are	normally	distributed	[21].	The	normal	
probability	 plot	 of	 the	 residuals	 for	 SF	 (not	 shown	
here)	depicted	that	the	data	points	were	fairly	close	to	
the	straight	line	and	this	indicates	that	the	experiments	
come	from	a	normally	distributed	population.
The	 confirmation	 experiments	 were	 conducted	 in	

three	different	conditions.	The	results	are	listed	in	Table	
5.	 If	 the	 average	 of	 the	 results	 of	 the	 confirmation	 is	
within	the	limits	of	the	CI,	then	the	significant	factors	as	
well	as	the	appropriate	levels	for	obtaining	the	desired	
results	are	properly	chosen	[17-21].	From	Table	5,	the	
experimental	 responses	 are	 in	 95%	CI	 range	 and	 this	
model	can	be	used	to	navigate	within	the	design	space.
In	order	to	test	the	validity	of	the	optimized	conditions	

given	 by	 the	 model,	 an	 experiment	 was	 also	 carried	
out	 with	 parameters	 as	 suggested	 by	 the	 model.	 The	
conditions	used	in	the	confirmatory	experiment	are	given	
in	Table	6.	The	DF	value	at	the	optimal	condition	was	
found	to	be	0.16	(Table	6),	which	is	consistent	with	the	
model.	Therefore,	 the	 formulated	model	 is	 acceptably	
valid.	 It	should	be	noted	 that	 the	smaller	value	of	DF	
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is	indicative	of	the	more	uniform	distribution	of	the	SiC	
particles	in	the	matrix	[11].	Figure	6	demonstrates	the	
optical	micrographs	of	the	composite	samples	fabricated	
by	different	compocasting	process	parameters	and	SiC	
contends	for	confirmation	and	optimal	condition	tests.
Figure	3	shows	that	DF	of	the	SiC	particles	decreases	

with	increasing	the	semisolid	stirring	time,	representing	
a	more	homogenous	SiC	distribution	within	the	matrix.	
At	 lower	 stirring	 time	 (10	 min),	 in	 some	 zones	 the	
matrix	 is	 free	 from	SiC	particles	and	 in	other	 regions	
clustering	 of	 the	 SiC	 particles	 is	 visible.	 This	 shows	
that	 this	 stirring	 time	 is	 insufficient	 for	 obtaining	 an	

acceptable	SiC	distribution	in	the	matrix.	Higher	stirring	
time	results	in	a	better	distribution	of	the	particles.	From	
Figure		4,	it	can	be	seen	that	decreased	stirring	temperature	
resulted	 in	 a	more	 homogeneous	 distribution	 of	 these	
particles	within	the	matrix,	as	indicated	by	smaller	DF	
values.	 This	 means	 that	 by	 increasing	 the	 semisolid	
stirring	 temperature,	 a	 less	 homogeneous	 distribution	
of	 the	 SiC	 particles	 is	 obtained	 in	 the	 matrix	 alloy.	
Decreasing	the	stirring	temperature	from	610	to	590	°C	
(at	the	fixed	stirring	speed	and	stirring	time	of	400	rpm	
and	20	min,	respectively)	leads	to	a	45%	decrease	in	the	
DF	value,	which	is	attributed	to	the	increased	viscosity	
of	 the	 semisolid	 slurry.	According	 to	 the	 equilibrium	
binary	Al-Si	diagram,	A356	aluminium	alloy	solidifies	
at	 a	 broad	 temperature	 interval	 (32	 °C)	 between	 583	
to	615	°C.		This	alloy	consists	of	45%,	35%	and	18%	
solid	fractions	in	semisolid	slurry	at	590,	600	and	610	
°C,	 respectively	 [28].	 This	 shows	 that	 the	 viscosity	
of	 the	 alloy	 increases	 as	 the	 semisolid	 temperature	
decreases.	 The	 restricted	 movement	 of	 the	 particles	
within	 the	 slurry	 during	 semisolid	 stirring	 prevents	
the	SiC	particles	from	settling	as	a	consequence	of	the	
increased	 effective	 viscosity;	 consequently,	 a	 more	
uniform	particle	distribution	is	obtained.	The	presence	
of	a	solid	phase	in	the	semisolid	slurry	can	also	help	the	
breakdown	of	the	SiC	clusters	during	stirring.
The	 results	 of	 this	 study	 show	 a	 remarkable	

improvement	 in	 the	 uniformity	 of	 the	 SiC	 particle	
distribution	 (as	 reflected	by	 the	decreased	DF)	when	
the	stirring	speed	of	500	rpm	was	used	(Figure	3	and	
Table	6).	Particle	clustering	is	observable	at	a	relatively	

Table 5.	Results	of	confirmation	tests.

Stirring	speed	(rpm) Stirring	time	(min) Stirring	temperature	(°C) SiC	content	(vol.	%) DF

1 Model 400 20 590 10 0.30

Confirmation	test 0.32

2 Model 200 30 600 5 0.51

Confirmation	test 0.53

3 Model 400 20 610 10 0.53

Confirmation	test 0.52

Table 6.	DF	at	optimal	conditions.

Parameter Stirring	speed Stirring	time Stirring	temperature SiC	content DF

Model 500	rpm 30	min 590	°C 15	vol	% 0.16

Confirmation	test 0.19

Fig. 6.	Optical	micrographs	of	the	A356-SiCp	composites	fabricated	
by	the	different	compocasting	process	parameters	and	SiC	contents	
(a-c)	confirmation	tests	and	(d)	at	optimal	condition.
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low	stirring	speed	(i.e.	200	rpm),	and	in	some	regions	
the	 matrix	 is	 free	 of	 SiC	 particles	 (Figure	 6b).	 By	
increasing	 the	 stirring	 speed	 to	 500	 rpm,	 a	 better	
distribution	 of	 the	 SiC	 particles	 within	 the	 matrix	
alloy	is	obtainable.	These	results	are	in	agreement	with	
some	related	studies	[10,12],	and	can	be	attributed	to	
the	increase	of	shear	forces	applied	by	increasing	the	
stirring	speed,	which	can	improve	the	uniformity	of	the	
SiC	particle	distribution	as	a	result	of	a	larger	vortex	
within	the	slurry.	On	the	other	hand,	the	higher	stirring	
speed	(from	500	to	600	rpm)	imposed	a	considerable	
non-uniformity	in	the	SiC	particle	distribution,	which	
can	be	attributed	to	the	increased	agitation	severity	of	
the	slurry,	resulting	in	clustering	of	the	SiC	particles.
The	effect	of	the	SiC	content	on	the	uniformity	of	the	

particles	distribution	within	the	matrix	is	given	in	Figure	
4.	 From	 this	 figure,	 improvement	 in	 the	 uniformity	
of	 the	SiC	particle	distribution	 is	obtainable	when	the	
particle	content	increases.	This	can	be	attributed	to	the	
(a)	 restricted	 movement	 of	 particles	 within	 the	 melt	
during	solidification	as	a	consequence	of	the	increased	
effective	 viscosity	 of	 the	 slurry	 and	 (b)	 finer	 matrix	
microstructure	 as	 a	 result	 of	 increased	 barriers	 for	
growth	of	α-Al	phase.

4. Conclusion

Compocasting	 processing	 of	 Al-A356-SiCp	

composites	 was	 studied	 and	 modeled	 using	 the	
D-optimal	design	of	experiment	(DODE).	The	effects	of	
compocasting	process	parameters	(stirring	temperature,	
stirring	time	and	stirring	speed)	as	well	as	SiC	content	
on	 the	 uniformity	 in	 the	 particle	 distribution	 were	
investigated.	 The	 conclusions	 drawn	 from	 the	 results	
can	be	summarized	as	follows:
1.	The	optimum	values	of	stirring	temperature,	stirring	
time	and	stirring	speed	were	found	to	be	590	°C,	30	
min	and	500	rpm,	respectively.

2.	 The	 correlation	 coefficient	 (R2)	 of	 the	 regression	
model	 was	 0.97,	 which	 confirms	 the	 excellent	
accuracy	of	the	model.

3.	 The	 most	 important	 factor	 affecting	 the	 SiC	
distribution	within	the	matrix	alloy	was	found	to	be	
the	stirring	temperature.

4.	 The	 uniformity	 in	 the	 SiC	 distribution	 improved	
by	 increasing	 the	SiC	content	and	stirring	 time	and	
decreasing	 the	 stirring	 temperature.	 A	 remarkable	
improvement	 in	 the	 uniformity	 of	 the	 SiC	 particle	

distribution	was	achieved	when	the	stirring	speed	of	
500	rpm	was	used.
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