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1. Introduction  
 

High energy radiation can be dangerous to human 
life depending on its energy. The three main rules for 
protection against the hazards of radiation are time, 
shielding and distance. Spending the shortest amount 
of time possible around the radiation source, staying 
as far away as possible from it, and using a shield 
between ourselves and the source can reduce the 
hazardous affects [1, 2]. The intensity of damage 
depends on the type of radiation, energy of radiation, 
absorbed dose, exposure time, etc.; unfortunately, the 
wide range of applications which involved these types 
of high energy radiation, such as x-ray and gamma-
ray, is large. X-ray and gamma-ray are radiation 
sources found in numerous industries such as 
aerospace, medical, nuclear reactors, securities and 
agriculture. Our interest is in the medical industry, 
particularly radiology, where we are mainly dealing 
with x-ray and gamma ray. How Since high energy 
radiations can easily penetrate   the human body, high-
density materials can be used for radiation shielding 
[3]. 

Generaly, lead and lead compounds are used for 
high-energy radiation shielding. However, lead is 
toxic and aprons are very heavy for personal shielding 
and also have disposal problems [4]. Therefore, 
polymer-based composites are particularly interesting 
candidates as radiation shielding materials for varied 
reasons such as lightness, environmental-friendliness, 
non-toxicity and flexibility [5]. Numerous 
experimental investigations and theoretical studies 
have reported the use of a variety of shielding 
materials for attenuation or absorption of undesired 
radiations, a few of which are mentioned below. 

The presence of wolfram metal powder in a styrene-
butadiene-styrene copolymer matrix created a new 
high energy radiation shielding material [6]. In 
another work, prepared high density polymer-wolfram 
composites were studied and showed low x-ray 
transmittance [7].  

Another study has been done on the radiation 
shielding provided by recycled agricultural fiber and 
industrial plastic wastes with lead oxide and boron 
carbide produced as composite material. In that study, 
B4C was used to absorb the neutron radiation [8]. 

Moreover, the presence of iodine monobromide 

(IBr) in graphite composites showed efficient 
shielding against x-ray radiation [9], and the presence 
of CNT has been proven to improve the resistance of 
PMMA against high-energy radiation [10]. 0.5 weight 
percentage of single-walled CNT in poly (4-methyl-1-
pentene) (PMP) has shown an increase in 
electromagnetic radiation resistance [11].  

It has been seen that concrete containing 
polystyrene and boron oxide can improve neutron 
shielding [12]. The presence of borosilicate has been 
shown to compensate for LDPE weakness of at high 
temperature and pressure such as that used for 
shielding in the spacecraft industry [13]. It has been 
proven that 2 weight percentage of boron nitride in 
HDPE can improve neutron-beam shielding [14]. 

Studies have shown that nano-sized boron carbide 
(B4C) and boron nitride (BN) powder melt blended 
with HDPE enhanced thermal neutron attenuation 
[15].  

The purpose of this study is to evaluate whether the 
developed non-lead polymer composites are effective 
at blocking diagnostic x-ray radiation. We   focused 
on high-density PE composites containing tungsten, 
molybdenum disulfide and boron carbide powders 
separately, and the effect of these particles, mainly on 
x-ray radiation attenuation, is investigated. The above 
particulate fillers contain three elements from the 6th 
and 13th group of the Mendeleev Table, which could 
be appropriate radiation shields either with a high 
atomic number or lamellar structure. As the type, 
structure and size of the filler are important factors in 
radiation absorption, tungsten metallic powder with its 
high atomic number and spherical shape, 
molybdenum disulfide as another high atomic 
number-metal compound with a lamellar shape, and 
boron carbide as a compound of a reported effective 
semi-metal with lamellar shape were chosen to be 
studied as dispersions in a fiber forming grade high 
density polyethylene. 

Low filled (10%wt) and high filled (45%) 
composites were prepared by melt blending in an 
internal mixer. SEM and EDX images were used to 
study the mixing efficiency method in the blend of 
particles with HDPE. Radiology pictures and turbidity 
tests were used for evaluating radiation absorption. 
For thermal and mechanical properties, DSC and 
tensile tests were used, respectively. Our other 
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concern is to know whether the developed composite 
materials have the potential for use in shaping 
processes such as extrusion fiber forming, followed by 
the production of nonwoven fabric or aprons, and 
compression/injection molding to produce any size, 
shape and type of shields. In order to achieve this 
objective it is necessary to study the rheological 
properties of dispersed systems. Rheology of 
dispersions of solid particles in polymer melt may be 
very complex and its control is necessary from a 
processability point of view [16]. It is worth 
mentioning that few studies have been made on either 
radiation absorbance or rheological behavior of the 
above composite materials. 
 
2. Experimental 
 

The raw materials used in this study consist of 
HDPE with MFI of 4 gr/10min, tungsten powder with 
1.2 µ particle size, boron carbide powder with 10µ 
particle size and molybdenum disulfide powder with 
5µ particle size. More information about the material 
used is mentioned in Table 1.  
 
Table 1. Turbidity of Radiology Images of Lead, HDPE/ 45%(wt) 
W, HDPE/ 45%(wt) B4C, HDPE/ 45%(wt) MoS2 

Material Density 
(g/cm3) 

Company 

HDPE (I4) 0.954 Jam Petrochemical

Boron Carbide 2.5 Pasargad Novin 

Tungsten 4.0 Merck 

Molybdenum 
disulfide 

5.0 Iran Molybdenum 

 
Samples were prepared in two different 10 and 45 

weight percentages for each of the above particles in 
polyethylene resin. First, HDPE and filler particles 
with in a specific portion were melt-mixed in an 
internal mixer (Brabender, Germany) with roller 
rotors for 4-5 minutes at 190oC at high speed (60 rpm) 
to obtain a steady torque. Then, the molten mixture 
was poured into a mold of 2mm thickness at the same 
temperature and a pressure of 25 bar in the hot press 
machine. For mechanical, thermal and radiation 
attenuation tests, primary samples were prepared in 
the shape of sheets. Scanning electron microscope 

(SEM by TESCAN, Czech Republic) equipped with 
EDX was performed for the compounds morphology. 
The specimens were broken in liquid nitrogen and the 
fractured surfaces were coated with gold before taking 
SEM images at 20 kV and magnification of 150x.  

Thermal properties were measured according to 
ASTM D3418 (by PL-DSC, England). Tensile 
properties were measured according to ASTM D638 
(by Instron, England) for dumbbell shaped specimens. 
A turbidity test was performed in accordance with 
ASTM D1003 (by BYK Gardner Haze-gard plus). 
Dynamic rheological measurements were 
implemented according to ASTM D4440 (by 
MCR300, Germany) and melt flow rate measurements 
were taken according to ASTM D1238 (by Zwick 
4100, Germany). Radiology was performed by an X-
FRAMES machine, Italy. A gamma ray attenuation 
test was carried out by two machines, Scintillator and 
Geiger Muller from ORTEC Company, USA. 
Irradiation of the samples was conducted at room 
temperature and in the presence of air. An standard 
lead specimen of 2.5mm thickness was used as a 
reference in radiology images taken at x-ray energy 
intensities of 40 and 80 Kev.  
 
3. Results and discussion  
 

The morphology of compounds characterized by 
SEM is presented in Figures 1a to 1f. These images 
also show the dispersed particle size. Figures 1e and 
1f reveal the lamellar structure for molybdenum 
disulfide with a particle size of 5 µm to 15µm particle 
size. It is observed that the dispersion of 45% (wt) 
molybdenum disulfide in the HDPE matrix is not 
quite uniform due to the rather high interaction of 
these particles with each other, hence only a few 
agglomerations have formed. Figures 1a and 1b show 
the lamellar structure of boron carbide particles 10µm 
to 20µm in particle size. SEM images for tungsten 
compounds in Figures 1c and 1d show a spherical 
structure of particles of 1.2µm to 2µm in size. Both 
tungsten and boron carbide have uniform dispersion 
and distribution in the matrix according to the SEM 
and EDX results. EDX images in Figures 2a to 2f 
show the efficiency of the mixing method and a good 
distribution of mineral particles in the HDPE matrix. 

The backscatter application was used for the EDX 
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to this table, the best result was attained for HDPE/ 
45% (wt). This is due to the high atomic number of 
tungsten, which has great influence on the absorption 
ability of this compound. 

Table 4. Scintillator Result with Co Source for Neat HDPE, 
HDPE/45%(wt) tungsten, HDPE/45%(wt) boron carbide, 
HDPE/45%(wt) molybdenum disulfide 

Sample Time 
(s) 

Number of passing 
through rays 

HDPE 200 551732

HDPE/45%(wt) W  200 477741 

HDPE/45%(wt)MoS2  200 492514 

HDPE/45%(wt)B4C  200 538670 

Figures 4 and 5 are spectrum plots of gamma-ray 
detector data (Co source) for neat HDPE and 
HDPE/45% (wt) W, respectively. The spectrum plots 
of B4C and MoS2 composites are similar to the 
spectrum plot of tungsten composite and available in 
Figures 6 and figure 7, respectively. The vertical axis 
shows the number of passing through rays and the 
horizontal axis shows the number of channels. The 
first peak in all plots is the backscatter peak, and the 
region between the backscatter and the main peak 
(which is the highest one and shows the number of 
passing through rays) is the Campton region. The 
45%wt tungsten loading in HDPE exhibited greater 
photon efficiency than 45%wt loading of MoS2 or 
B4C, which would allow for greater gamma-ray 
attenuation and thus greater photon protection.  

ATR analysis on samples exposed to gamma-ray in 
a Scintillator machine was used to investigate the 
radiation degradation of HDPE/ 45% (wt) W due to its 
gamma ray absorption ability. Figure 8 shows the 
ATR spectrum for neat HDPE before and after 
exposure to gamma-ray radiation; it shows two extra 
peaks at 1243cm-1 and 1158cm-1 wavenumber due to 
the formation of double bounds after exposure of the 
resin to gamma radiation. These double bonds belong 
to terminal vinyl groups generated due to chain 
scission degradation of HDPE.  

Figure 9 shows the ATR spectrum of HDPE/ 45% 
(wt) tungsten before and after exposure to gamma-ray 
radiation. As it is clear from the graph, no change has 
appeared in the polymer chemical structure after 
radiation. So dispersion of tungsten powders in the 

HDPE matrix brings about stability to polyolefin 
against gamma ray radiation. 

Comparing ATR spectrums of neat HDPE and 
irradiated HDPE shows the appearance of two peaks 
at 1158 cm-1 and 1243 cm-1 after gamma radiation, 
which are assigned to creation ethers and esters 
groups due to oxidative degradation. All other peaks 
are due to different CH2 and CH3 absorptions.  

 For studying HDPE’s flow behavior containing 
different particles, small amplitude oscillating shear 
measurements were conducted on polyethylene 
samples loaded with 10 and 45 weight percentages of 
particulate fillers at 200oC. Figure 10 shows the 
complex viscosity of these samples against frequency. 
It is revealed that the resistance to flow of HDPE 
filled with lamellar particles, particularly MoS2, is 
much higher than the neat resin as well as the resin 
filled with spherical tungsten powders. The viscosity 
rise of MoS2 samples to very high values at low 
frequency, as observed in their SEM images, is due to 
the presence of agglomerates as well as possible 
formation of a weak gel-network by bridging 
flocculation. The intensive shear thinning of these 
samples indicates disagglomeration and break down 
of gel-network structure upon shearing. As it is shown 
in Figure 10, neat HDPE, HDPE/10% (wt) tungsten 
and HDPE/45% (wt) tungsten curves have the same 
slope. This means that no difference appears between 
loaded system and non-loaded system behavior when 
by the frequency of oscillations or shear intensity 
increases. This phenomenon shows that the dispersion 
of these particles in the matrix was good enough and 
no more dispersion occurred by increasing the shear 
rate and only disentanglement and chain orientation 
happen as shear increased. Similar flow behavior of 
tungsten filled samples to that of neat HDPE is very 
interesting and shows only a few interactions of 
tungsten particles with their surroundings occur as 
they roll over and are displaced in the shear field. For 
hard-sphere dispersions, where both repulsion and 
attraction are screened, the rheological behavior is 
simple and it depends only on the balance between 
Brownian diffusion and hydrodynamic interactions. 
However, we may compare the observed behavior 
with the prediction of Einstein’s theory for suspension 
of rigid, non-interacting spherical particles in 
Newtonian fluids: 
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Fig. 11. Storage modulus curves vs frequency at 200oC. 
 
the highest elasticity, it manifested the highest 
dissipation of energy due to the structure build-up 
mentioned above. As with ᶇ* and G' curves, G" 
curves of neat HDPE and tungsten filled resin 
coincide almost on each other, meaning that the 
HDPE/tungsten compound has the same elastic and 
viscose effects as the neat resin has in its melt 
processing.  
 

 
Fig. 12. Loss modulus curves vs frequency at 200oC. 

 
Since the aim of this study was to prepare a lead 

replacement for radiation shielding and only the 
compounds containing 45% (wt) particles were 
relatively suitable according to the radiology images, 
other tests such as tensile and thermal analysis were 
conducted only on this ratio of loaded samples in 
further investigations.  

Tensile tests were employed to evaluate the 
mechanical properties. Figure 13 shows a comparison 
of the bar chart of the yield strength, yield strain and 
modulus of neat HDPE with those of the prepared 

composites, and Table 5 shows the same properties 
with their exact values. It is seen that incorporating 
45% (wt) tungsten powder in HDPE improves the 
tensile properties, contrary to the effect of other 
particles. The main and bold point here is that this 
sample has a higher yield strength and strain   than 
neat HDPE. Higher yield strength and stiffness 
(modulus) imply greater shape resistance against 
mechanical loading. With 45% (wt) tungsten loading, 
the composite material still yields, even at higher 
strain, and has ductile and flexible behavior at room 
temperature. It is anticipated at large weight fractions, 
such as 45% where W metal particles separation 
distances are small, they attract each other by van der 
Waals forces. This attraction energy is eliminated at 
high temperature, in the melt state.  

Fig. 13. Tensile bar chart of HDPE and its prepared composites. 

 
DSC test was employed to examine the thermal 

properties of samples containing 45% (wt) fillers.  
Cooling and heating curves in the DSC test are shown 
in Figures 14 and 15. The degree of crystallinity (Xc) 
was calculated based on the crystallization enthalpy 
∆Hc values from Figure 15. The crystallization 
enthalpy of 100% crystalline PE (∆H0

c) was found to 
be 288J/gr [17]. Table 6 demonstrates the thermal 
properties as the melting temperature, crystallinity 
percentage and crystallization temperature of neat 
HDPE and 45% (wt) filler loaded compounds. From 
these data it was understood that the presence of these 
fillers in the polymer matrix did not change the 
melting temperature and crystallinity of HDPE. In 
other words, these particles neither act as a nucleating 
agent nor bring about any disturbances for crystal 
formation of molten matrix upon cooling.  
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Fig. 14. Heating DSC curves for composite samples containing 
45% (wt) fillers at a temperature range of 50 to 200oC.  

Furthermore, as it is observed from Figure 15 and 
Table 6, adding B4C and MoS2 particles to 
polyethylene increases the crystallization temperature 
(Tc) because of their lamellar structure and their 
higher thermal conductivity. As a result, the 
cooling/solidifying time or molding cycle in injection 
molding operation is shortened. 

Fig. 15. Cooling DSC curves for composite samples containing 
45%(wt) fillers at a temperature range of 50 to 200oC. 

4. Conclusion

Developed low density 45% (wt) tungsten powder
loaded high density polyethylene composite material 
demonstrates nearly equivalent x-ray radiation 
attenuation with an energy intensity of up to 80KeV 
used in radiology compared to toxic high density Pb-
based material [18][3]. While this composite material 
also provides good shielding protection against higher 
energy, γ-ray radiation emitted from Co60 source in 
Scintillator machine, the absorbed radiation dose did 
not change the chemical structure of the polyolefin 
matrix, contrary to its degradative effect on unloaded 
neat resin.   

Interparticle interaction within lamellar MoS2 
particles dispersed in molten HDPE causes the 
formation of a weak gel-network structure with solid-
like behavior and yield stress in shear flow. In 
quenching under quiescent condition, the 
crystallization temperature of matrix shifts to a higher 
temperature implying shortening of the cooling/ 
solidifying time. In contrast, even high loadings of 
spherical tungsten powder not only does not alter the 
thermal properties of polymer phase, likewise, it 
hardly modifies the viscoelastic shear flow 
characteristics of neat base HDPE resin, implying the 
same ease of processing as the neat matrix is 
preserved in the composite material. Nevertheless, in 
solid state, 45% (wt) tungsten filled composite still 
has ductile and flexible behavior, enjoying higher 
yield strength and strain and stiffness than neat 
HDPE. 

Table 5. Tensile Test Results 

Test HDPE HDPE/45% (wt) MoS2 HDPE/45% (wt) B4C HDPE/45% (wt) W 
Yield strength (MPa) 24.4 16.7 17.8 30.8 
Yield strain (%) 5.8 4.0 6.0 7.0 
1% Modulus (MPa) 4.9 5.8 5.4 6.6 

Table 6. Some Thermal Properties of Samples. 

Melting point
(oC) 

Crystallization temperature, Tc, 
(oC) 

Crystallinity percentage 
(%) 

Sample 

133.96 115.69 63.0 HDPE 
133.08 115.63 62.2 HDPE/45%(wt) W 
133.20 119.02 64.5 HDPE/45%(wt) B4C 
132.46 118.88 63.0 HDPE/45%(wt) MoS2 
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