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kinematic energy are defined within the formalism of quantum oscillator principles and quantum 
field theory, utilizing the auxiliary variational method. Relativistic corrections and effects on 
the shape of the potential due to relativistic mass are plotted and compared to the calculated 
non-relativistic plots. The values of the mass spectra of Bottomia used in the potential plot are 
consistent with predictions from other theoretical approaches and explain the behavior of the 
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1. Introduction

The different spin arrangement properties of angular momentum
states in predicted highly excited Bottomia bound states (𝑏𝑏 − 𝑏𝑏∗), 
among other highly resonance states, are important and significant 
[1,2]. These highly massive resonance states have been 
distinguished based on the theoretical behaviors of the standard 
quark model, allowing us to explore various phenomena associated 
with bound states. The hybrid confinement potential (HCP) model 
in quantum chromodynamics (QCD) plays an important role in 
reviewing and analyzing the characteristics of strongly excited 
resonance states of Bottomia. These types of potentials help us 
understand the perturbative and nonperturbative Hamiltonian of 
interactions, particle dynamics, decay rates, bound state properties, 
and quark-gluon dynamics in high-energy physics and ultra-hot 
media. In the last experimental research from the LHC, Super 
KEKB accelerator (Belle II), ALICE Experiment, LHCb 
Experiment, CMS and ATLAS Experiments, the highly resonant 
states of Bottomia, such as 7s: Υ(10860) and 10s: Υ(11020), can 
be better described and analyzed using the HCP model [3,4]. The 
calculated spectra of Bottomia, based on Coulombic and 
confinement characteristics of potential models, closely align with 
experimental results obtained from strong interaction. The mass 
spectroscopy of bound states, decay channels, transition rates, 
hybrid states, relativistic corrections to mass, nonperturbative 
potentials, wavefunction analysis, and decay mechanisms under 
extreme ultra-hot temperature conditions in high-energy physics 
can be investigated more effectively within HCP models. Hence, 
predicting new resonance states of Bottomia and new exotic 
hadronic bound states is enabled by determining mass spectra 
under a specific potential model.  

This intertwined space of experimental and theoretical 
knowledge regarding additional excitations and more complex 
hadronic states is filled and completed by studying the properties 
of Bottomia-bound states. Bottomia, based on its relativistic and 
nonperturbative properties, is the best candidate for investigating 
hybrid states because most of the expected behaviors of its 
resonance states exhibit certain anomalies [5]. These anomalies can 
describe potential impact factors and transition rates. As we know, 
recent research and studies have focused on the relativistic 
behaviors of Bottomia in highly excited states, leading to improved 
theoretical calculations of mass spectra using relativistic mass. 
Hence, in this article, we define relativistic corrections on mass and 
potential interaction in Bottomia bound states. The paper is 
organized as follows: In section 2, we determine the mass and 
constituent mass of Bottomia bound states, based on canonical 
variable transformations in symplectic space under the oscillator 
representation method, where the wavefunction is presented as a 
Gaussian basis function. In section 3, the relativistic radial 
Schrödinger equation (RRSE) is solved using relativistic energy 

within the HCP framework. In section 4, we plot the effective 
potential shape under various effective potential parameters, i.e., 
𝜇𝜇𝑏𝑏 , 𝜉𝜉 with the non-relativistic and relativistic RSE, defining 
relativistic corrections on mass spectra and eigenenergies of 
excited states. In the last section, the practical application of the 
results of theoretical calculations of the mass spectrum and 
interaction potential behavior is demonstrated. We used 
computational coding and graph visualization with MATLAB 
R2021a software, and for additional mass spectra calculations, we 
employed Excel 2022 software. 

2. Relativistic form of the Schrödinger equation

We have defined the bound state properties using quantum
field theory and the Feynman path integral method within 
the formalism of a gauge boson interaction with 𝑏𝑏 − 𝑏𝑏∗ 
pairs, based on the theoretical definition of the vacuum 
polarization corrections that connect different loop diagrams 
in Feynman path integrals [6-8]. The non-relativistic and 
relativistic radial Schrödinger equation reads: 

𝐻𝐻Ψ(𝑟𝑟) = 𝐸𝐸(𝜇𝜇)Ψ(𝑟𝑟)          (1) 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟Ψ(𝑟𝑟) = 𝐸𝐸(𝜇𝜇)Ψ(𝑟𝑟)   (2) 

Therefore, for 𝑏𝑏 − 𝑏𝑏∗pairs the bound state takes the form 
of non-RRSE   

� 𝑝𝑝�𝑟𝑟
2

2𝑚𝑚𝑏𝑏
2 + 𝑝𝑝�𝑟𝑟

2

2𝑚𝑚𝑏𝑏∗2 + 𝑉𝑉(𝑟𝑟)� Ψ(𝑟𝑟) = 𝐸𝐸(𝑚𝑚𝑏𝑏 , 𝑚𝑚𝑏𝑏∗)Ψ(𝑟𝑟)  (3) 

This formula can be easily solved by many different 
methods. For example, by modifying Eq. (1), one has the 
RRSE model in the following form, 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟Ψ(𝑟𝑟) = 𝐸𝐸(𝜇𝜇)Ψ(𝑟𝑟) 

which can be defined by changing classical kinetic energy to 
the total relativistic energy as follows: 

1
2

𝑚𝑚0𝑣𝑣2 → �𝑚𝑚0
2 + 𝑝𝑝𝑟𝑟

2 

where 𝑚𝑚0 is the rest mass and 𝑝𝑝𝑟𝑟
  is the relative radial 

momentum of a quark-antiquark pair in a bound state. On 
the other hand, as we know, the inequality of the arithmetic 
and geometric inequality equation in mathematics holds for 
two non-negative numbers 𝑥𝑥 and 𝑦𝑦 with equality if and only 
if 𝑥𝑥 =  𝑦𝑦, as follows. 

𝑥𝑥 + 𝑦𝑦
2

≽ �𝑥𝑥𝑥𝑥 
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Choosing x = μ  and 𝑦𝑦 = 𝑚𝑚0
2+𝑝𝑝�𝑟𝑟

2

𝜇𝜇
, then 

𝑓𝑓(𝜇𝜇∗) ≽ �𝜇𝜇∗ ⋅
𝑚𝑚0

2 + 𝑝̂𝑝𝑟𝑟
2

𝜇𝜇∗ = �𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 

One considers that the arithmetic mean of a set of non-
negative real numbers is greater than or equal to the 
geometric mean of the same set. The minimal (optimal) 

choice of parameter μ* is defined when 𝜇𝜇∗ = 𝑚𝑚0
2+𝑝𝑝�𝑟𝑟

2

𝜇𝜇∗ ; 

therefore, we have 

𝜇𝜇∗2 = 𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 → 𝜇𝜇∗ = �𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 

and one can define the minimum value of the function 𝑓𝑓(𝜇𝜇) 
within the minimal choice of 𝜇𝜇∗ = 𝜇𝜇, which is equal to 

min
𝜇𝜇>0

𝑓𝑓(𝜇𝜇) = �𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 

Inserting the minimal value μ back into the first 
relationship gives us  

�𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 =
1
2

��𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 +
𝑚𝑚0

2 + 𝑝̂𝑝𝑟𝑟
2

�𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2
�  

Using this equation, we define the effective mass 
approximation in high energy physics in the form of 

�𝑚𝑚0
2 + 𝑝̂𝑝𝑟𝑟

2 = min
𝜇𝜇≻0

1
2

�𝜇𝜇 +
𝑚𝑚0

2 + 𝑝̂𝑝𝑟𝑟
2

𝜇𝜇
�  

where the minimal value choice of this parameter 𝜇𝜇 is given 
for the mass of the particle. Below, we consider this optimal 
value as the relativistic mass of a particle in bound states or 
the constituent mass of particles in the context of high 
energy physics. Now, we use a mass approximation in Eq. 
(2) for the bound states of the pair 𝑏𝑏 − 𝑏𝑏∗ within the
potential of interaction 𝑉𝑉(𝑟𝑟) with the rest masses 𝑚𝑚𝑏𝑏

 =
𝑚𝑚𝑏𝑏∗

 = 𝑚𝑚0
  and the relative momentum |𝑝̂𝑝𝑟𝑟𝑟𝑟

2 | = |𝑝̂𝑝𝑟𝑟𝑏𝑏∗
2 | = |𝑝̂𝑝𝑟𝑟

2|
as follows:

�2 min
𝜇𝜇𝑏𝑏

1
2

�𝜇𝜇𝑏𝑏 + 𝑚𝑚0
2+𝑝𝑝�𝑟𝑟

2

𝜇𝜇𝑏𝑏
� + 𝑉𝑉(𝑟𝑟)� Ψ(𝑟𝑟)  = 𝐸𝐸(𝜇𝜇𝑏𝑏)Ψ(𝑟𝑟)   (4) 

where parameter 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑏𝑏∗ is the relativistic mass correction 
of the rest mass of the pair 𝑏𝑏 − 𝑏𝑏∗ in the bound states 
(constituent mass of particles). To describe two-particle 
interactions and neglect the spin interactions, we use the 
principles of quantum mechanics (QM) and quantum field 

theory (QFT). As we know, the probability amplitude for a 
particle’s (the pair 𝑏𝑏 − 𝑏𝑏∗) transformation from 𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗ to 
𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗  under the external quantum gauge field 𝐴𝐴𝛼𝛼  is 
described by the propagator function [7,8]. The initial and 
final states of 𝑏𝑏 − 𝑏𝑏∗ bound states are connected by this 
function and determine how the bottom and antibottom 
quarks travel over spacetime in the Minkowski coordinate 
system. In QM and QFT, Green's function [9] is presented 
as a propagator in the form of  

𝐺𝐺( 𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗ ∣∣ 𝐴𝐴𝛼𝛼 ) = 〈𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗|𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖|𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗〉 

and the interaction of the pair 𝑏𝑏 − 𝑏𝑏∗ is described by 
Π(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗) polarization loop operator  

Π(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗)
= 〈𝐺𝐺𝑏𝑏(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗|𝐴𝐴𝛼𝛼)𝐺𝐺𝑏𝑏∗(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗ ∣ 𝐴𝐴𝛼𝛼)〉𝐴𝐴𝛼𝛼  

and the field propagator by Green’s function 

𝛿𝛿 
(4)(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗)𝛿𝛿 

(4)(𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗) = ��𝑖𝑖𝛾𝛾𝑏𝑏
𝛼𝛼𝜕𝜕𝛼𝛼,𝑏𝑏 + 𝑖𝑖𝑖𝑖𝐴𝐴𝛼𝛼  � −

𝑚𝑚𝑏𝑏
2�𝐺𝐺( 𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗ ∣∣ 𝐴𝐴𝛼𝛼 ) + ��𝑖𝑖𝛾𝛾𝑏𝑏∗

𝛼𝛼 𝜕𝜕𝛼𝛼,𝑏𝑏∗ + 𝑖𝑖𝑖𝑖𝐴𝐴𝛼𝛼  � −
𝑚𝑚𝑏𝑏∗

2 �𝐺𝐺� 𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗;𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗ ∣∣ 𝐴𝐴𝛼𝛼 � +
𝑉𝑉(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗|𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗)              (5)    

Eq. (3) describes an effective interaction of two particles 
for creating the bound states in an external field within a 
potential interaction in QFT [9,10]. We have to average and 
integrate over the external field to determine properties and 
all possible configurations of interaction using Eq. (3). This 
equation explains the external field reaction to a disturbance 
of the bounded particles at 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗. Based on the context of 
quantum chromodynamics (QCD) in high energy limits, we 
consider the long-range forces �(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗) − (𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗)� that 
lead to creating a Bottomia bound state with the mass 𝑀𝑀, 
and rewrite the behavior of the polarization loop operator in 
the form [11,12]. 

Π(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗) = ∫ 𝑑𝑑4

(2𝜋𝜋)4
1

𝑝𝑝2−𝑀𝑀2+𝑖𝑖𝑖𝑖
𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥𝑏𝑏,𝑥𝑥𝑏𝑏∗ ;𝑦𝑦𝑏𝑏,𝑦𝑦𝑏𝑏∗)      (6) 

As the pair 𝑏𝑏 − 𝑏𝑏∗  loop function Π(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗) 
decays exponentially, this gives us a functional equation to 
calculate the mass spectra 

Π(𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗; 𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗) = 𝐶𝐶. 𝑒𝑒−𝑀𝑀|(𝑥𝑥𝑏𝑏,𝑥𝑥𝑏𝑏∗)−(𝑦𝑦𝑏𝑏,𝑦𝑦𝑏𝑏∗)| 

where 𝐶𝐶 is a normalization constant. Its value can be 
determined from the properties of the wavefunction of the 
bound state, the boundary conditions of the bound state, and 
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the interaction kernel. The specific conditions 𝑀𝑀 <  ∞ and 
𝑀𝑀 =  𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑏𝑏∗ are necessary to create a bound state. Next, 
the polarization loop operator using QM principles based on 
the Feynman path-integral formulation [6-8], was used to  to 
determine the two-point correlationfunctions of fields with 
the rest masses 𝑚𝑚𝑏𝑏

 , 𝑚𝑚𝑏𝑏∗
  as follows, 

Π(𝑥𝑥|𝐴𝐴)

= � �
𝑑𝑑𝜇𝜇𝑏𝑏𝑑𝑑𝜇𝜇𝑏𝑏∗ 
(8𝑥𝑥𝜋𝜋2)2

∞

0

∞

0
𝐼𝐼(𝜇𝜇𝑏𝑏 , 𝜇𝜇𝑏𝑏∗)𝑒𝑒

−|𝑥𝑥|
2 � �

𝑚𝑚𝑏𝑏
2

𝜇𝜇𝑏𝑏
+𝜇𝜇𝑏𝑏�+�

𝑚𝑚𝑏𝑏∗2

𝜇𝜇𝑏𝑏∗ +𝜇𝜇𝑏𝑏∗��
 

where 𝑥𝑥 = (𝑥𝑥𝑏𝑏 , 𝑥𝑥𝑏𝑏∗) − (𝑦𝑦𝑏𝑏 , 𝑦𝑦𝑏𝑏∗), parameter 𝜇𝜇𝑏𝑏 , 𝜇𝜇𝑏𝑏∗ are the 
constituent masses of particles in the bound states. These 
masses are presented as the relativistic mass of particles 
based on Eq. (2).  After some mathematical corrections, the 
mass spectrum of the bound state is defined as 

𝑀𝑀 = lim
|𝑥𝑥|→∞)

−𝑙𝑙𝑙𝑙 𝛱𝛱(𝑥𝑥)
|𝑥𝑥|

and after some mathematical adjustments and using the 
saddle point method from Eq. (2), the mass spectrum of the 
pair 𝑏𝑏 − 𝑏𝑏∗ bound state based on the rest mass 𝑚𝑚𝑏𝑏

 = 𝑚𝑚𝑏𝑏∗
 , 

the constituent mass 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑏𝑏∗, and 𝐸𝐸(𝜇𝜇𝑏𝑏) energy of bound 
states reads as [13,14]. 

𝑀𝑀 = min
𝜇𝜇𝑏𝑏

�𝑚𝑚𝑏𝑏
2

𝜇𝜇𝑏𝑏
+ 𝜇𝜇𝑏𝑏 + 𝐸𝐸(𝜇𝜇𝑏𝑏)�       (7) 

To minimize this equation, we define the constituent mass 
equation of the quark as follows. 

𝜇𝜇𝑏𝑏 = �𝑚𝑚𝑏𝑏
2 − 𝜇𝜇𝑏𝑏

2 𝑑𝑑𝑑𝑑(𝜇𝜇𝑏𝑏)
𝑑𝑑𝜇𝜇𝑏𝑏

      (8) 

Hence, the interaction of the pair 𝑏𝑏 − 𝑏𝑏∗ containing 
potential and nonpotential terms is modified under the 
Feynman path integral (functional integral) in non-
relativistic theory  and reads as 

𝐼𝐼(𝜇𝜇𝑏𝑏) = 𝐶𝐶∗𝑒𝑒−𝑥𝑥 𝐸𝐸(𝜇𝜇𝑏𝑏) 

where 𝐶𝐶∗ is a constant and depends on the normalization and 
boundary conditions of the bound state.  

3. Relativistic correction on the interaction potential

In this section, we present the relativistic mass correction
and effects on the energy eigenvalue within HCP of 
7s: Υ(10860) and 10s: Υ(11020). Starting from Eq. (2) and 

solving RRSE under the Gaussian basis function method 
(GBM) for 𝑏𝑏 − 𝑏𝑏∗ bound states within the HCP of the form 

𝑉𝑉(𝑟𝑟) = −𝑉𝑉0
e𝛼𝛼𝛼𝛼−e−𝛼𝛼𝛼𝛼

e𝛼𝛼𝛼𝛼+e−𝛼𝛼𝛼𝛼 + 𝜎𝜎𝜎𝜎  

where 𝑉𝑉0 ≻ 0  𝛼𝛼, and 𝜎𝜎 are constant with the specific values 
that are adjusted to match the experimental data of highly 
states of Bottomia [15]. HCP is important in high energy 
physics because of the complex interplay between two 
specific forces at short and long distances in QM, QFT, 
spectroscopy, and quark-antiquark interactions. Choosing 
HCP in hyperbolic 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑎𝑎𝑎𝑎) or exponential forms with the 
confinement term, we can explain the balance between short 
and long interaction range [16]. The radial excitation and 
orbital excitation based on the physical structure of the 
quarkonium system can better describe theoretical 
predictions and experimental data under this type of 
potential. Using GBM or effective field models, HCP can 
refine spectral interpretation states [17]. This potential 
allows us to include a discussion on nonperturbative effects 
in strong coupling interactions in hadronic states and 
analyze the behaviors of 𝑏𝑏 − 𝑏𝑏∗ bound states under different 
kinds of interactions. GBM allows us to define and 
determine relativistic effects of a bound state problem in 
QCD and hadronic spectroscopy in high energy physics by 
setting the pair 𝑏𝑏 − 𝑏𝑏∗ as a quantum harmonic oscillator 
bound state.  GBM helps us to represent canonical variables 

𝑥𝑥� = �𝑎𝑎�++𝑎𝑎�  �
√2𝑚𝑚𝑚𝑚

and 𝑝̂𝑝 = 𝑖𝑖√2𝑚𝑚𝑚𝑚�𝑎𝑎�+−𝑎𝑎�  �
2

 in the form of creation 𝑎𝑎�+ 

and annihilation 𝑎𝑎� operators that act on the ground state with 
the rest mass 𝑚𝑚, and ω is the angular frequency of a particle 
in the quantum harmonic oscillator (QHO) model in QM, 
then we can describe the quantization of the Gaussian form 
of wavefunctions in a secondary space and extend it to QCD 
[18,19]. Hence, using the canonical variables presentation 
and potential interaction based on QFT forms by integral 
representations  

𝜑𝜑�(𝑥𝑥) = � 𝑑𝑑𝑑𝑑 𝑎𝑎� 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥� 

𝜑𝜑� +(𝑥𝑥) = � 𝑑𝑑𝑑𝑑 𝑎𝑎�+ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥� 

𝑉𝑉(𝑥𝑥) = � �
𝑑𝑑𝑑𝑑
2𝜋𝜋

�
𝑛𝑛

𝑉𝑉�(𝑘𝑘2)𝑒𝑒�−𝑘𝑘2

4𝜔𝜔�: 𝑒𝑒
𝑖𝑖𝑖𝑖

�𝑎𝑎�++𝑎𝑎�  �
√2𝑚𝑚𝑚𝑚

𝑉𝑉(𝑥𝑥) is the potential interactions under Wick's spacetime 
ordering operators principles, i.e., “: ∎ :”. Now, we consider 
the transformation of radial and momentum variables 𝑟𝑟, 𝑝𝑝𝑟𝑟  
of 𝑅𝑅𝑛𝑛 space to the new axillary variable 𝑠𝑠2𝜉𝜉 , 𝑝𝑝𝑠𝑠 of 𝑅𝑅𝜂𝜂 . This 
axillary space is the secondary space under transformation 
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𝑟𝑟 = 𝑠𝑠2𝜉𝜉 , 𝑝𝑝𝑟𝑟 → 𝑝𝑝𝑠𝑠, then the wavefunction can be transformed 
to Ψ(𝑟𝑟) → 𝑞𝑞2𝜉𝜉(𝑛𝑛𝜔𝜔−2𝑛𝑛𝑟𝑟)𝛷𝛷(𝑠𝑠2), where the secondary space 
has a dimension 

𝜂𝜂 = 4𝑠𝑠(𝑛𝑛𝜔𝜔 − 2𝑛𝑛𝑟𝑟) + 2𝜉𝜉 + 2 = 4ℓ𝜉𝜉 + 2𝜉𝜉 + 2 

and 𝑛𝑛𝜔𝜔 = 0,1,2, ⋯ is the main quantum number in the QHO 
method, 𝑛𝑛𝑟𝑟 is the radial excitation number 𝑛𝑛𝑟𝑟, and 𝜉𝜉 is a 
variational parameter, which allows us to achieve the 
physical features of the asymptotic behavior of the bound 
state. To define the mass spectrum of bound states in QFT, 
we use QHO and QCD by explaining bound state 
characteristics under the field conditions, such as 𝑑𝑑𝜀𝜀(𝜇𝜇𝑏𝑏)

𝑑𝑑𝑑𝑑
= 0, 

which is described in the next paragraph [9]. Hence, we 
have to define the parabolic form of canonical operators 
with the normal ordering method in the secondary space, 
and also consider that the total Hamiltonian of the pair 𝑏𝑏 −
𝑏𝑏∗ bound states interaction does not contain the core 
parabolic terms in the canonical variables. These conditions 
are a specific and central point of the QHO method in the 
GBM model and lead us to calculate the oscillator 
frequency, 𝜔𝜔𝑛𝑛𝑟𝑟, of the bound state. For the growing 
potential with the core parabolic and Wick-ordered 
correction terms, we determine the parabolic form of 
canonical operators in the Wick ordering method and then 
use it in the potential terms. Hence, in this paper, we 
consider only the core parabolic because the nonperturbative 
and spin interactions are not included in our calculation. 
Hence, the parabolic form of the position operator is defined 
with the Gemma function, 

𝑠𝑠2𝜏𝜏 = 𝜔𝜔𝑛𝑛𝑟𝑟
−𝜏𝜏𝛤𝛤 �

𝜂𝜂
2

+ 𝜏𝜏� Γ−1 �
𝜂𝜂
2

� 

and the momentum operator is defined as follows 

𝑝𝑝𝑠𝑠
2𝜏𝜏 = 𝜔𝜔𝑛𝑛𝑟𝑟

𝜏𝜏 Γ �
𝜂𝜂
2

+ 𝜏𝜏� Γ−1 �
𝜂𝜂
2

� 

where 𝜏𝜏 = 1,2,3, …, the notation and canonical operators 
satisfy the commutator form [𝑠̂𝑠, 𝑝̂𝑝𝑠𝑠

 ] = 𝑖𝑖ℏ, [𝑎𝑎�, 𝑎𝑎�+] = 𝜂𝜂. The 
radial Laplacian operator of RRSE in the secondary space 
𝑅𝑅𝜂𝜂:  

�𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸(𝜇𝜇𝑏𝑏)�Ψ(𝑟𝑟) = 0 

under transformation 𝑟𝑟 = 𝑠𝑠2𝜉𝜉  reads as: 

𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝑛𝑛−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑑𝑑

 → 𝑑𝑑2

𝑑𝑑𝑠𝑠2 + 𝜂𝜂−1
𝑠𝑠

𝑑𝑑
𝑑𝑑𝑑𝑑

and then RRSE of 𝑏𝑏 − 𝑏𝑏∗ bound states within HCP 
interaction present as follows:  

�𝑝𝑝𝑠𝑠
2

2
+ 𝑉𝑉�𝑠𝑠2𝜉𝜉� −  𝐸𝐸(𝜇𝜇𝑏𝑏)� 𝛷𝛷(𝑞𝑞2) = 0   (9) 

As we know, the spin Hamiltonian is highly significant. 
However, the primary focus of this article is on defining the 
relativistic effects of bound states using the GBM and QHO 
methods. Therefore, in the supplementary calculations, the 
spin Hamiltonian 𝐻𝐻𝑠𝑠 = 𝐻𝐻𝑆𝑆𝑆𝑆 + 𝐻𝐻𝐿𝐿𝐿𝐿 + 𝐻𝐻𝑇𝑇𝑇𝑇  has not been 
incorporated, and its additional effects on the mass spectrum 
have been ignored. Now, using the parabolic form of 
canonical operators, Eq. (9), RRSE for the excited radial 
states in secondary space under the second quantization 

within 𝑉𝑉(𝑟𝑟) = −𝑉𝑉0
e𝛼𝛼𝛼𝛼−e−𝛼𝛼𝛼𝛼

e𝛼𝛼𝛼𝛼+e−𝛼𝛼𝛼𝛼 + 𝜎𝜎𝜎𝜎, HCP is defined in the

following way [9]. 

𝜀𝜀(𝜇𝜇𝑏𝑏) = �𝜂𝜂𝜔𝜔ℓ
 

4
+ 2𝜇𝜇𝑏𝑏𝜉𝜉2𝑠𝑠4𝜉𝜉−2(−𝑉𝑉0

e�𝛼𝛼𝑠𝑠2𝜉𝜉�−e−�𝛼𝛼𝑠𝑠2𝜉𝜉�

e𝛼𝛼�𝛼𝛼𝑠𝑠2𝜉𝜉�+e−𝛼𝛼�𝛼𝛼𝑠𝑠2𝜉𝜉�
+

𝜎𝜎𝑠𝑠2𝜉𝜉) − 2𝜇𝜇𝑏𝑏𝜉𝜉2𝑠𝑠4𝜉𝜉−2𝐸𝐸 (𝜇𝜇𝑏𝑏) + 𝑛𝑛𝜔𝜔𝜔𝜔ℓ
 � 𝛷𝛷(𝑞𝑞2) = 0  (10) 

The ground state 𝑛𝑛𝜔𝜔 = 𝑛𝑛𝑟𝑟 = 0, mass spectrum by 
expanding HCP under the Bernoulli series and the parabolic 
form of the position operator 𝑠𝑠2𝜏𝜏, and using (7) gives us 
[20,21]. 

𝑀𝑀 = �4𝑚𝑚𝑏𝑏
2 − 2𝜇𝜇𝑏𝑏

2 𝑑𝑑𝑑𝑑(𝜇𝜇𝑏𝑏)
𝑑𝑑𝜇𝜇𝑏𝑏

�
1/2

+ 𝜇𝜇𝑏𝑏
 

2
𝑑𝑑𝑑𝑑(𝜇𝜇𝑏𝑏)

𝑑𝑑𝜇𝜇𝑏𝑏
+ +𝐸𝐸(𝜇𝜇𝑏𝑏)    (11) 

where the ground state energy eigenvalue reads as 

𝐸𝐸0(𝜇𝜇𝑏𝑏) =
𝜔𝜔0

2𝜉𝜉Γ−1(𝜂𝜂
2+2𝜉𝜉+1)Γ(𝜂𝜂

2+1)

8𝜇𝜇𝑏𝑏𝜉𝜉2 +

(𝜎𝜎−𝛼𝛼𝛼𝛼0)Γ−1(𝜂𝜂
2+2𝜉𝜉+1)Γ(𝜂𝜂

2+3𝜉𝜉+1)

𝜔𝜔0
𝜉𝜉 +

�𝛼𝛼3𝑉𝑉0�Γ−1�𝜂𝜂
2+2𝜉𝜉+1�Γ�𝜂𝜂

2+5𝜉𝜉+1�

3𝜔𝜔0
3𝜉𝜉 

    (12) 

Then, minimizing 𝑑𝑑𝜀𝜀(𝜇𝜇𝑏𝑏)
𝑑𝑑𝑑𝑑

= 0 and 𝑑𝑑𝜀𝜀(𝜇𝜇𝑏𝑏)
𝑑𝑑𝑑𝑑

= 0, the ground 
state oscillator frequency 𝜔𝜔0 and the energy eigenvalue 
function is defined using the relation 

𝑑𝑑𝐸𝐸(𝜇𝜇𝑏𝑏)
𝑑𝑑𝜇𝜇𝑏𝑏

= −
𝜔𝜔0

2𝜉𝜉Γ−1(𝜂𝜂
2+2𝜉𝜉+1)Γ(𝜂𝜂

2+1)

8𝜇𝜇𝑏𝑏
2𝜉𝜉2

in the above equations, and the oscillator frequency 𝜔𝜔0 is 
defined as follows. 

𝜔𝜔0
5𝜉𝜉 −

4(𝜎𝜎−𝛼𝛼𝛼𝛼0)𝜇𝜇𝑏𝑏𝜉𝜉2Γ�𝜂𝜂
2+3𝜉𝜉+1�

Γ �𝜂𝜂
2+1�

𝜔𝜔0
2𝜉𝜉 − 

4(𝛼𝛼3𝑉𝑉0)𝜇𝜇𝑏𝑏𝜉𝜉2Γ�𝜂𝜂
2+5𝜉𝜉+1�

Γ �𝜂𝜂
2+1�

= 0     (13) 
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and the constituent mass as a relativistic effect on mass in 
the vacuum state 𝜇𝜇𝑏𝑏

  reads as 

𝜇𝜇𝑏𝑏 = �𝑚𝑚𝑏𝑏
2 +

Γ(𝜂𝜂
2+1)𝜔𝜔0

2𝜉𝜉

16𝜉𝜉2Γ (𝜂𝜂
2+2𝜉𝜉+1)

�
1/2

   (14) 

Now, based on Eqs. (10) and (12), we can define the mass 
spectrum, energy eigenvalue, and oscillator frequency in the 
highly radial resonance states 𝑛𝑛𝑟𝑟 = 𝑛𝑛𝜔𝜔−ℓ

2
 by the following 

equations [22]. 

𝐸𝐸𝑛𝑛𝑟𝑟(𝜇𝜇𝑏𝑏) = (1
8

+ 𝑛𝑛𝑟𝑟
𝜂𝜂

)
Γ(𝜂𝜂

2+1)

𝜇𝜇𝑏𝑏𝜉𝜉2Γ (𝜂𝜂
2+2𝜉𝜉+1)

𝜔𝜔𝑛𝑛𝑟𝑟
2𝜉𝜉 +

(𝜎𝜎−𝛼𝛼𝛼𝛼0)Γ(𝜂𝜂
2+3𝜉𝜉+1)

Γ (𝜂𝜂
2+2𝜉𝜉+1)𝜔𝜔𝑛𝑛𝑟𝑟

𝜉𝜉 +

�𝛼𝛼3𝑉𝑉0�
 
Γ�𝜂𝜂

2+5𝜉𝜉+1�

3Γ (𝜂𝜂
2+2𝜉𝜉+1)𝜔𝜔𝑛𝑛𝑟𝑟

3𝜉𝜉  
    (15) 

(𝜎𝜎−𝛼𝛼𝛼𝛼0)𝜇𝜇𝑏𝑏𝜉𝜉2Γ�𝜂𝜂
2+3𝜉𝜉+1�

(1
8+𝑛𝑛𝑟𝑟

𝜂𝜂 )Γ�𝜂𝜂
2+1�

𝜔𝜔𝑛𝑛𝑟𝑟
2𝜉𝜉 −

(𝛼𝛼3𝑉𝑉0)𝜇𝜇𝑏𝑏𝜉𝜉2Γ�𝜂𝜂
2+5𝜉𝜉+1�

4(1
8+𝑛𝑛𝑟𝑟

𝜂𝜂 )Γ �𝜂𝜂
2+1�

= 0     (16) 

The constituent mass 𝜇𝜇𝑏𝑏
  of the highly bound states reads as 

𝜇𝜇𝑏𝑏 = �𝑚𝑚𝑏𝑏
2 + 2(1

8
+ 𝑛𝑛𝑟𝑟

𝜂𝜂
)

Γ(𝜂𝜂
2+1)𝜔𝜔𝑛𝑛𝑟𝑟

2𝜉𝜉

𝜉𝜉2Γ (𝜂𝜂
2+2𝜉𝜉+1)

�
1/2

  (17) 

We now calculate the mass spectra of Bottomia using the 
non-relativistic Eq. (1) and relativistic Eq. (2) equations 
[11]. The results of Bottomia bound states in the QHO and 
GBM models are presented using specific parameters [23] in 
Table 1.  

𝑚𝑚𝑏𝑏 = 𝑚𝑚𝑏𝑏∗ = 4.823𝐺𝐺𝐺𝐺𝐺𝐺 

𝑉𝑉0 = 1.1𝐺𝐺𝐺𝐺𝐺𝐺,      𝛼𝛼 = 0.1𝐺𝐺𝐺𝐺𝐺𝐺 

𝜎𝜎 = 0.25𝐺𝐺𝐺𝐺𝑉𝑉2 

We chose parameters to adjust the calculation of the mass 
spectrum based on theoretical data from other sources and 
experimental results. However, these parameters are defined 
only at the extreme point of bound state formation and are 
not adjusted in this calculation for the long-range stability of 

bound states. We also considered  𝑎𝑎 = 𝜎𝜎 −  𝑉𝑉0𝛼𝛼 > 0,   𝑎𝑎 ≠
0, 𝑉𝑉0 ≠ 0, which are extreme values solely for the creation 
of bound states, especially for highly resonant states. Hence, 
we can use experimental data and compare these values. 
Despite the predicted heavy mass of 𝑏𝑏 − 𝑏𝑏∗in the highly 
radial excitation 𝑛𝑛𝑟𝑟 = 7, 8,9,10 states, such as 7s: Υ(10860) 
and 10s: Υ(11020), the relativistic effects become more 
apparent, leading to significant internal motion and 
increasing the relativistic behavior of 𝑏𝑏 − 𝑏𝑏∗ bound state. 
We defined quantitative error analysis using the Root Mean 
Square Error (RMSE), which measures the difference 
between the relativistic and non-relativistic values based on 
our approach to calculating the masses of bound states, and 
compared these values with experimental data. All values in 
our calculations are in GeV. 

In this paper, we investigate this effect on the mass spectra 
and describe how it affects the shape of the potential 
interaction. In this article, we include only the kinetic and 
mass-dependent terms, as well as the effective potential 
related to the relativistic mass correction, in our calculation. 
The effective potential that is described in this research 
under the QHO and GBM models is based on the 
Schrödinger equation.  

� −1
2𝜇𝜇𝑏𝑏

� 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝑛𝑛−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑑𝑑

� + ℓ(ℓ+1)
2𝜇𝜇𝑟𝑟2 − 𝑉𝑉0

e𝛼𝛼𝛼𝛼−e−𝛼𝛼𝛼𝛼

e𝛼𝛼𝛼𝛼+e−𝛼𝛼𝛼𝛼 + 𝜎𝜎𝜎𝜎� Ψ(𝑟𝑟) =

𝐸𝐸(𝜇𝜇𝑏𝑏)Ψ(𝑟𝑟) →  

�𝑝𝑝𝑠𝑠
2

2
+ 2𝜇𝜇𝑏𝑏𝜉𝜉2𝑠𝑠4𝜉𝜉−2(−𝑉𝑉0

e�𝛼𝛼𝑠𝑠2𝜉𝜉�−e−�𝛼𝛼𝑠𝑠2𝜉𝜉�

e𝛼𝛼�𝛼𝛼𝑠𝑠2𝜉𝜉�+e−𝛼𝛼�𝛼𝛼𝑠𝑠2𝜉𝜉�
+ 𝜎𝜎𝑠𝑠2𝜉𝜉)� 𝛷𝛷(𝑞𝑞2) =

𝐸𝐸(𝜇𝜇𝑏𝑏)𝛷𝛷(𝑞𝑞2)  

determines as follows:  

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) = 2𝜇𝜇𝑏𝑏𝜉𝜉2𝑠𝑠4𝜉𝜉−2(−𝑉𝑉0
e�𝛼𝛼𝑠𝑠2𝜉𝜉�−e−�𝛼𝛼𝑠𝑠2𝜉𝜉�

e�𝛼𝛼𝑠𝑠2𝜉𝜉�+e−�𝛼𝛼𝑠𝑠2𝜉𝜉�
+ 𝜎𝜎𝑠𝑠2𝜉𝜉)       (18)

and presents a short-range attractive term and a long-range 
confinement term, including the effect of ℓ - the angular 
momentum quantum number, which appears in the given 
parameters 𝜇𝜇𝑏𝑏, 𝜉𝜉 in the following form 

Table 1. Comparison of the mass spectrum in the lower and higher states of bottomia 

𝑴𝑴𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝑴𝑴𝒓𝒓𝒓𝒓𝒓𝒓  𝝁𝝁𝒃𝒃 𝑴𝑴𝐓𝐓𝐓𝐓 𝑴𝑴𝐄𝐄𝐄𝐄𝐄𝐄 RMSE 
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

RMSE 
𝑹𝑹𝑹𝑹𝑹𝑹 

𝟏𝟏𝟏𝟏: 𝚼𝚼(𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) 9.2692 9.4582 4.8390 9.463 [25-27] 9.4603 [11] 0.1913 0.0021 

𝟐𝟐𝒔𝒔: 𝚼𝚼(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) 10.2354 10.3068 4.9048 10.023[23, 28] 10.023 [24] 0.2125 0.2840 

𝟕𝟕𝟕𝟕: 𝚼𝚼(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) 10.6709 10.8424 5.0039 10.887 [23] 10.885 [24] 0.2144 0.0421 

𝟏𝟏𝟏𝟏𝟏𝟏: 𝚼𝚼(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) 10.8296 11.0522 5.0513 11.021 [23] 11.020 [24] 0.1904 0.0322 
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2 +3𝜉𝜉+1)
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2 +2𝜉𝜉+1)𝜔𝜔𝑛𝑛𝑟𝑟

3𝜉𝜉  
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To plot the shape of the effective potential based on the 
non-RRSE and RRSE, we used the relativistic and non-
relativistic mass spectra and the constituent mass of quarks 
in 1s: Υ(94603) in the ground state 𝑛𝑛 = 0, ℓ = 0, 𝑛𝑛𝑟𝑟 = 0, 
2s: Υ(10023) in the first excited state, and two predicted 
highly excited states 7s: Υ(10860) and 10s: Υ(11020). The 
results of shape, depth, and asymptotic lines of potential are 
affected by changing the reduced mass of the 𝑏𝑏 − 𝑏𝑏∗ bound 
state. From the curve and shape of the effective potential 
function, we can determine the minimum point where and 
how steep the transition occurs, and potential wall behaviors 
provide the properties of the bound state. As we can see in 
the relativistic and non-relativistic plots in Figs. 1 and 2, the 
mass of the bound state changes the curvature of the curve 
of the potential shape. In the highly bound state mass value 
(highly resonance states), the shape becomes deeper, which 
allows us to determine the minimum energy eigenvalue in 
the mass spectra of the bound states. These properties can 
help us understand the internal dynamics of bound states.  

In high energy physics, the properties of potential 
interactions are an interesting open question for future 
research at the LHC, the Super KEKB accelerator (Belle II), 
the ALICE Experiment, the LHCb Experiment, CMS, and 
ATLAS. Therefore, by plotting HCP with different potential 
parameters, we can explain the sensitivity of mass spectra 
and the shape of potential in QHO and GBM models, and 
analyze the experimental data. The form of the plot and the 
depth of the potential well can be used to assign the other 
hadronic states to be constituted of more than two quarks. 
Based on the QHO and GBM models, one can obtain a 
suitable HCP to explain the dynamics of the hadronic bound 
states by applying relativistic corrections to the mass 
without involving spin interactions. 3D HCP shapes and 
mass spectra based on non-RRSE and RRSE can represent 
how sensitive the depth of the potential well is to the 
relativistic mass correction. The results of the relativistic 
correction on the effective potential of Bottomia bound 
states were performed using MATLAB R2021a software 
and Excel 2022, and are presented in Figs. 1 and 2. 

4. Conclusion

This study concentrates on describing the asymptotic
behavior of the polarization loop function in the quantum 
gauge interaction to define the mass spectrum of bound 
Bottomia states, taking into account the relativistic 
correction to the mass of constituent particles in high energy 
physics. Comparing non-relativistic mass spectra and 
relativistic correction on mass spectra based on the modified 
Schrödinger equation, we can conclude that our results may 
explain and predict resonance states using the 3D HCP 
well’s shape of the pair 𝑏𝑏 − 𝑏𝑏∗ bound states. Based on the 
results presented  in Table 1, as defined analytically using 
QHO and GBM models, we can summarize the main 
concepts as follows:  

1- The modified Schrödinger equation under the
relativistic correction on mass is investigated by applying 
the QHO and GBM models. 

2- The exponential and linear confinement type of
potential is used to determine the mass spectra of Bottomia 
1𝑠𝑠: Υ(94603), 2𝑠𝑠: Υ(10023), 7s: Υ(10860), and 10s: Υ(11020).  

3- The analytical expression of the constituent mass 𝜇𝜇𝑏𝑏 and
reduced mass 𝜇𝜇 = 𝜇𝜇𝑏𝑏

2
 are presented. Results are used to 

describe mass spectra under both relativistic and non-
relativistic formalisms. 

4- Defined numerical results are compared with the
experimentally well-established low-level states 
1𝑠𝑠: Υ(94603), 2𝑠𝑠: Υ(10023) and high resonance states 
7s: Υ(10860), and 10s: Υ(11020). For these S-wave states, 
our calculation has percent differences, computed as 

𝚫𝚫𝑴𝑴%  

𝟏𝟏𝟏𝟏: 𝚼𝚼(𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) -0.02

𝟐𝟐𝟐𝟐: 𝚼𝚼(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) +2.83

𝟕𝟕𝟕𝟕: 𝚼𝚼(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) -0.39

𝟏𝟏𝟏𝟏𝟏𝟏: 𝚼𝚼(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) 0.29+

In the first excited state, our value is approximately 2.83 % 
larger than the experimental one; the reason for this 
difference can be found in the total Hamiltonian of 
interactions. In the Bottomia Hamiltonian of hyperfine 
(triplet and singlet levels), spin–orbit and tensor interactions 
are important. Conversely, the nonperturbed Hamiltonian 
term, which includes the relativistic behavior of potential 
interaction and high-temperature conditions, can shift the 
mass spectra to some disagreement with experimental data. 

5- We used purely static potential, no perturbative loop
corrections, and no higher-order momentum‐dependent 
terms 𝑝𝑝𝑠𝑠

2𝜏𝜏 with 𝜏𝜏 = 2,4; hence, these terms can justify some 
disagreement between our results and the experimental data. 
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Therefore, as we know, the first radial excited state feels the 
short-distance Coulombic potential more than the ground 
state. Since we did not directly include αs as a coupling 
constant, it makes the first radial existing state mass 
spectrum +2.83 % too heavy. 

6- Using the boundary condition of potential depth 𝑉𝑉0,
theoretically calculated and predicted by applying the QHO 
and GBM models, as well as other higher resonance states, 
such as 11s and 12s. With the relativistic bound state 
masses 11.1148, 11.1748, and non-relativistic 10.8758, 
10.9195, the constituent mass of the bottom quark 5.0662 
and 5.0809 are determined in 11𝑠𝑠 and 12𝑠𝑠 states, which 
have not yet been discovered or confirmed [29,30]. 

The QHO and GBM methods employed in this theoretical 
research are among the most established approaches in the 
calculation and prediction of hadronic bound states. 

Therefore, theoretical calculations with optimized and 
modified potentials for the structure of the strong interaction 
can provide new and different approaches, especially from a 

particle physics perspective, as accelerator and LHC 
technologies continue to evolve and improve. One of these 
approaches is discussed in this article. This approach 
describes the behavior and properties of the bound Bottomia 
within the relativistic mass correction.  
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Fig. 1. Effective potential well with the relativistic correction on mass. 
Note. 1𝑠𝑠: Υ(94603), 2𝑠𝑠: Υ(10023), 7s: Υ(10860), 10s: Υ(11020). 
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Fig. 2. Multiple surfaces of the effective potentials: left (RRSE) and right (non-RRSE). 
Note. 1𝑠𝑠: Υ(94603), 2𝑠𝑠: Υ(10023), 7s: Υ(10860), 10s: Υ(11020). 
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