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Abstract

Unlike light quarkonium bound states, the relativistic effects in highly massive quarkonium states such as 

Bottomia, in the large radial excitation states, cause Bottomia to have a strong reaction and sensitivity to 

relativistic corrections. Highly excited states have a larger separation distance between the constituent quark-

antiquark pair in the bound state. Therefore, they will have a relatively high velocity, which makes the 

relativistic kinetic energy and relativistic mass of quarks non-negligible. Notably, in this study, one of the 

important behaviors of relativistic effects of predicted highly excited hadronic bound states of Bottomia within 

the hybrid confinement potential is obtained. The high energy refinement and relativistic effect modification 

of mass and kinematic energy in the formalism of quantum oscillator principles and quantum field theory under 

the auxiliary variational method are defined. Relativistic corrections and effects on the shape of potential due 

to relativistic mass are plotted and compared to non-relativistic plots that are calculated. Values of the mass 

spectra of Bottomia used in the potential plot are consistent with predictions from other theoretical approaches 

and explain results behaviors in the used method. 

Keywords: Highly excited states; Hybrid potential; Relativistic correction; Variational method. 

1. Introduction

The different spin arrangement properties of angular momentum states in predicted highly

excited Bottomia bound states (𝑏 െ 𝑏∗), among other highly resonance states, are important and 

significant [1,2]. These highly massive resonance states have been distinguished based on the 

theoretical behaviors of the standard quark model, allowing us to explore different and various 

phenomena of bound states. The hybrid confinement potential (HCP) model in quantum 

chromodynamics (QCD), plays an important role in reviewing and analyzing the characteristics of 
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strongly excited resonance states of Bottomia. These types of potentials help us with understanding 

the perturbative and nonperturbative Hamiltonian of interactions, particle dynamics, decay rate, 

bound state properties, and also quark-gluon dynamics in high energy physics and ultra hot medium. 

In the last experimental research from the LHC, Super KEKB accelerator (Belle II), ALICE 

Experiment, LHCb Experiment, CMS and ATLAS Experiments, the highly resonant states of 

Bottomia, such as 7s:Υሺ10860ሻ and 10s:Υሺ11020ሻ can be better described and analyzed using HCP 

model [3,4]. The calculated spectra of Bottomia, based on Coulombic and confinement characteristics 

of potential models, closely align with experimental results obtained from strong interaction. The 

bound states' mass spectroscopy, decay channels, transition rates, hybrid states, relativistic 

corrections on mass and nonperturbative potential, wavefunction analysis, and decay mechanism 

under extreme ultra hot temperature conditions of the environment in high energy physics can be 

investigated better within HCP models. Hence, predicting new resonance states of Bottomia and new 

exotic hadronic bound states is enabled by determining mass spectra under a specific potential model. 

This intertwined space of experimental and theoretical knowledge regarding additional excitations 

and more complex hadronic states is filled and completed by studying the properties of Bottomia 

bound states. Bottomia based on relativistic and nonperturbative properties is the best candidate for 

investigating hybrid states because most of the expected behaviors of its resonance states have certain 

anomalies [5]. These anomalies can describe potential impact factors and transition rates. As we 

know, recent research and studies have focused on the relativistic behaviors of Bottomia in highly 

excited states, which leads to improved theoretical calculation of mass spectra using relativistic mass. 

Hence, in this article, we define relativistic corrections on mass and potential interaction in Bottomia 

bound states. The paper is organized as follows: In section 2, we determine the mass and constituent 

mass of Bottomia bound states, based on canonical variable transformations in symplectic space 

under the oscillator representation method, where the wavefunction is presented as a Gaussian basis 

function. In section 3, the relativistic radial Schrödinger equation (RRSE) using relativistic energy 
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within the HCP is solved. In section 4, we plot effective potential shape under a variation of effective 

potential parameters 𝜇௕ , 𝜉 with the nonrelativistic and relativistic RSE, defining relativistic 

corrections on mass spectra and eigenenergies of excited states. In the last section, the practical 

application of the results of theoretical calculations of the mass spectrum and interaction potential 

behavior is demonstrated. We use computational coding and graph visualization with MATLAB 

R2021a software, and for additional mass spectra calculations, we use Excel 2022 software. 

2. Relativistic form of the Schrödinger equation

We have defined the bound state properties using quantum field theory and the Feynman path

integral method within the formalism of a gauge boson interaction with 𝑏 െ 𝑏∗ pairs, based on the 

theoretical definition of the vacuum polarization corrections that connect different loop diagrams in 

Feynman path integrals [6-8]. The nonrelativistic and relativistic radial Schrödinger equation reads: 

𝐻Ψሺ𝑟ሻ ൌ 𝐸ሺ𝜇ሻΨሺ𝑟ሻ                 (1) 

𝐻௥௘௟Ψሺ𝑟ሻ ൌ 𝐸ሺ𝜇ሻΨሺ𝑟ሻ            (2) 

Therefore, for 𝑏 െ 𝑏∗pairs bound state has the form non-RRSE has the form: 

ቆ
௣ොೝమ

ଶ௠್
మ ൅

௣ොೝమ

ଶ௠್∗
మ ൅ 𝑉ሺ𝑟ሻቇΨሺ𝑟ሻ ൌ 𝐸ሺ𝑚௕,𝑚௕∗ሻΨሺ𝑟ሻ  (3) 

It can easily be solved by many different methods. By modifying (1), one has RRSE model as 

the following form: 

𝐻௥௘௟Ψሺ𝑟ሻ ൌ 𝐸ሺ𝜇ሻΨሺ𝑟ሻ 

and it is defined by changing classical kinetic energy to the total relativistic energy:  

1
2
𝑚଴𝑣ଶ → ට𝑚଴

ଶ ൅ 𝑝௥ଶ 

where 𝑚଴ is the rest mass and 𝑝௥  is the relative radial momentum of a quark-antiquark pair in a bound 

state. On the other hand, as we know that the inequality of the arithmetic and geometric inequality 
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equation in mathematics holds for two non-negative numbers 𝑥 and 𝑦 with equality if and only if 𝑥 ൌ

 𝑦, as follows: 

𝑥 ൅ 𝑦
2

≽ ඥ𝑥𝑦 

Choosing 𝑥 ൌ  𝜇 and 𝑦 ൌ ௠బ
మା௣ොೝమ

ఓ
, then: 

𝑓ሺ𝜇∗ሻ ≽ ඨ𝜇∗ ⋅
𝑚଴
ଶ ൅ 𝑝̂௥ଶ

𝜇∗
ൌ ට𝑚଴

ଶ ൅ 𝑝̂௥ଶ 

One considers that the arithmetic mean of a set of non-negative real numbers is greater than or 

equal to the geometric mean of the same set. The minimal (optimal) choice of parameter 𝜇∗ is defined 

when 𝜇∗ ൌ ௠బ
మା௣ොೝమ

ఓ∗
, therefore, we have  

𝜇∗ଶ ൌ 𝑚଴
ଶ ൅ 𝑝̂௥ଶ → 𝜇∗ ൌ ට𝑚଴

ଶ ൅ 𝑝̂௥ଶ 

and one can define the minimum value of the function 𝑓ሺ𝜇ሻ within the minimal choice of 𝜇∗ ൌ 𝜇, 

which is equal to:  

min
ఓவ଴

𝑓ሺ𝜇ሻ ൌ ට𝑚଴
ଶ ൅ 𝑝̂௥ଶ 

Inserting the minimal value 𝜇  back in the first relationship, 

ට𝑚଴
ଶ ൅ 𝑝̂௥ଶ ൌ

1
2
ቆට𝑚଴

ଶ ൅ 𝑝̂௥ଶ ൅
𝑚଴
ଶ ൅ 𝑝̂௥ଶ

ඥ𝑚଴
ଶ ൅ 𝑝̂௥ଶ

ቇ  

Using this equation, we define the effective mass approximation in high energy physics in the form 

of: 

ට𝑚଴
ଶ ൅ 𝑝̂௥ଶ ൌ min

ఓ≻଴

1
2
ቆ𝜇 ൅

𝑚଴
ଶ ൅ 𝑝̂௥ଶ

𝜇
ቇ   

where the minimal value choice of this parameter 𝜇 is given for the mass of the particle. Below, we 

consider this optimal value as a relativistic mass of a particle in the bound states or the constituent 

mass of particles in the context of high energy physics. Now, we use a mass approximation in (2) for 
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the bound states of the pair 𝑏 െ 𝑏∗ within the potential of interaction 𝑉ሺ𝑟ሻ with the rest masses 𝑚௕
 ൌ

𝑚௕∗
 ൌ 𝑚଴

  and the relative momentum |𝑝̂௥௕
ଶ | ൌ |𝑝̂௥௕∗

ଶ | ൌ |𝑝̂௥ଶ| 

ቆ2 min
ఓ್

ଵ

ଶ
ቀ𝜇௕ ൅

௠బ
మା௣ොೝమ

ఓ್
ቁ ൅ 𝑉ሺ𝑟ሻቇΨሺ𝑟ሻ  ൌ 𝐸ሺ𝜇௕ሻΨሺ𝑟ሻ                (4)  

parameter 𝜇௕ ൌ 𝜇௕∗ is the relativistic mass correction of the rest mass of the pair 𝑏 െ 𝑏∗ in the bound 

states (constituent mass of particles). Now, for describing two-particle interactions and neglecting the 

spin interactions, we use the principles of quantum mechanics (QM) and quantum field theory (QFT). 

As we know, the probability amplitude for a particle’s (the pair 𝑏 െ 𝑏∗) transformation from 𝑥௕, 𝑥௕∗ to 

𝑦௕ ,𝑦௕∗  under the external quantum gauge field 𝐴ఈ  by the propagator function is described [7,8]. The 

initial and final states of 𝑏 െ 𝑏∗bound states are connected by this function and determine how the 

bottom and antibottom quarks travel over spacetime in the Minkowski coordinate system. In QM and 

QFT, the Green's function is presented as a propagator in the form [9] 

𝐺ሺ 𝑥௕ , 𝑥௕∗;𝑦௕ ,𝑦௕∗ ∣∣ 𝐴ఈ ሻ ൌ 〈𝑦௕,𝑦௕∗|𝑒ି௜ு௧|𝑥௕, 𝑥௕∗〉 

and, the interaction of the pair 𝑏 െ 𝑏∗ is described by Πሺ𝑥௕, 𝑥௕∗;𝑦௕, 𝑦௕∗ሻ polarization loop operator  

Πሺ𝑥௕, 𝑥௕∗;𝑦௕,𝑦௕∗ሻ ൌ 〈𝐺௕ሺ𝑥௕, 𝑥௕∗;𝑦௕,𝑦௕∗|𝐴ఈሻ𝐺௕∗ሺ𝑥௕, 𝑥௕∗;𝑦௕, 𝑦௕∗ ∣ 𝐴ఈሻ〉஺ഀ 

and the field propagator by Green’s function 

𝛿 
ሺସሻሺ𝑥௕, 𝑥௕∗ሻ𝛿 

ሺସሻሺ𝑦௕,𝑦௕∗ሻ ൌ ൣ൫𝑖𝛾௕
ఈ𝜕ఈ,௕ ൅ 𝑖𝑔𝐴ఈ  ൯ െ 𝑚௕

ଶ൧𝐺ሺ 𝑥௕, 𝑥௕∗;𝑦௕ , 𝑦௕∗ ∣∣ 𝐴ఈ ሻ ൅ ൣ൫𝑖𝛾௕∗
ఈ 𝜕ఈ,௕∗ ൅

𝑖𝑔𝐴ఈ  ൯ െ 𝑚௕∗
ଶ ൧𝐺൫ 𝑥௕ , 𝑥௕∗;𝑦௕,𝑦௕∗ ∣∣ 𝐴ఈ ൯ ൅ 𝑉ሺ𝑥௕ , 𝑥௕∗;𝑦௕ ,𝑦௕∗|𝑥௕ , 𝑥௕∗;𝑦௕ ,𝑦௕∗ሻ                                      (5)    

Eq. (3) describes an effective interaction of two particles for creating the bound states in an 

external field within a potential interaction in QFT [9,10]. We have to average and integrate over the 

external field to determine properties and all possible configurations of interaction using Eq. (3). This 

equation explains the external field reaction to a disturbance of the bounded particles at 𝑦௕, 𝑦௕∗. Based 

on the context of quantum chromodynamics (QCD) in high energy limits, we consider the long-range 
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forces ൫ሺ𝑥௕, 𝑥௕∗ሻ െ ሺ𝑦௕,𝑦௕∗ሻ൯ that lead to creating a Bottomia bound state with the mass 𝑀, and 

rewrite the behavior of the polarization loop operator in the form [11, 12] 

Πሺ𝑥௕, 𝑥௕∗;𝑦௕,𝑦௕∗ሻ ൌ ׬
ௗర

ሺଶగሻర
ଵ

௣మିெమା௜ఌ
𝑒௜௣ሺ௫್,௫್∗ ;௬್,௬್∗ሻ   (6) 

As the pair 𝑏 െ 𝑏∗  loop function Πሺ𝑥௕, 𝑥௕∗;𝑦௕, 𝑦௕∗ሻ decays exponentially this gives us a 

functional equation to calculate the mass spectra 

Πሺ𝑥௕, 𝑥௕∗;𝑦௕,𝑦௕∗ሻ ൌ 𝐶. 𝑒ିெ|ሺ௫್,௫್∗ሻିሺ௬್,௬್∗ሻ| 

where 𝐶 is a normalization constant. Its value can be determined from the properties of the wavefunction of 

the bound state, boundary conditions of the bound state, and the interaction kernel. The specific conditions 

𝑀 ൏  ∞ and 𝑀 ൌ  𝑚𝑏 ൅ 𝑚𝑏∗  are the necessary conditions to create a bound state. Now the polarization loop 

operator using QM principles based on the Feynman path-integral formulation by modifying equations for the 

Green's function [6-8] in the external gauge field 𝐴𝛼 for the two-point correlation functions of fields with 

the rest masses 𝑚௕
 ,𝑚௕∗

  

Πሺ𝑥|𝐴ሻ ൌ න න
𝑑𝜇௕𝑑𝜇௕∗  
ሺ8𝑥𝜋ଶሻଶ

ஶ

଴

ஶ

଴
𝐼ሺ𝜇௕ ,𝜇௕∗ሻ𝑒

ି
|௫|
ଶ ቈ ቆ

௠್
మ

ఓ್
ାఓ್ቇାቆ

௠್∗
మ

ఓ್∗
ାఓ್∗ቇ቉

 

where 𝑥 ൌ ሺ𝑥𝑏,𝑥𝑏∗ሻ െ ሺ𝑦𝑏,𝑦𝑏∗ሻ, parameter 𝜇௕,𝜇௕∗ are the constituent masses of particles in the bound states. 

These masses are presented as the relativistic mass of particles based on Eq. (2).  After some mathematical 

corrections the mass spectrum of the bound state is defined 

𝑀 ൌ lim
|௫|→ஶሻ

െ𝑙𝑛 𝛱ሺ𝑥ሻ
|𝑥|

and after some mathematical adjustments and using the saddle point method from Eq. (2), the mass 

spectrum of the pair 𝑏 െ 𝑏∗ bound state based on the rest mass 𝑚௕
 ൌ 𝑚௕∗

 , the constituent mass 𝜇௕ ൌ

𝜇௕∗ and 𝐸ሺ𝜇௕ሻ energy of bound states reads [13,14] 

𝑀 ൌ min
ఓ್

ቀ
௠್
మ

ఓ್
൅ 𝜇௕ ൅ 𝐸ሺ𝜇௕ሻቁ                                                           (7) 

and minimizing this equation, we define the constituent mass equation of the quark as follows 
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𝜇௕ ൌ ට𝑚௕
ଶ െ 𝜇௕

ଶ ௗாሺఓ𝑏ሻ

ௗఓ𝑏
                                                                                                                      (8) 

Hence, the interaction the pair 𝑏 െ 𝑏∗ that contains potential and nonpotential terms is modified under 

the Feynman path integral (functional integral) in nonrelativistic theory reads  

𝐼ሺ𝜇௕ሻ ൌ 𝐶∗𝑒ି௫ ாሺఓ್ሻ 

where 𝐶∗ is a constant and depends on the normalization and boundary conditions of the bound state.  

 

3. Relativistic correction on the interaction potential 

In this section, we present the relativistic mass correction and effects on the energy eigenvalue 

within HCP of 7s:Υሺ10860ሻ and 10s:Υሺ11020ሻ. Starting from Eq. (2) and solving RRSE under the 

Gaussian basis function method (GBM) for 𝑏 െ 𝑏∗ bound states within the HCP of the form 𝑉ሺ𝑟ሻ ൌ

െ𝑉଴
ୣഀೝିୣషഀೝ

ୣഀೝାୣషഀೝ
൅ 𝜎𝑟, where 𝑉଴ ≻ 0  𝛼, and 𝜎 are constant with the specific values that are adjusted to 

match the experimental data of highly states of Bottomia [15]. HCP is important in high energy 

physics because of the complex interplay between two specific forces at short and long distances in 

QM, QFT, spectroscopy, and quark-antiquark interactions. Choosing HCP in hyperbolic 𝑡𝑎𝑛ℎሺ𝑎𝑟ሻ 

or exponential forms with the confinement term, we can explain the balance between short and long 

interaction range [16]. The radial excitation and orbital excitation based on the physical structure of 

the quarkonium system can better describe theoretical prediction and experimental data under this 

type of potential. Using GBM or effective field models, HCP can refine spectral interpretation states 

[17]. This potential allows us to include a discussion on nonperturbative effects in strong coupling 

interactions in hadronic states and analyze the behaviors of 𝑏 െ 𝑏∗ bound states under different kinds 

of interactions. GBM allows us to define and determine relativistic effects of a bound state problem 

in QCD and hadronic spectroscopy at high energy physics by setting the pair 𝑏 െ 𝑏∗ as a quantum 

harmonic oscillator bound state.  GBM helps us to represent canonical variables 𝑥ො ൌ
൫௔ොశା௔ො  ൯

√ଶ௠ఠ
 and 𝑝̂ ൌ
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௜√ଶ௠ఠ൫௔ොశି௔ො  ൯

ଶ
 in the form of creation 𝑎ොା and annihilation 𝑎ො operators that act on the ground state with 

the rest mass 𝑚, and ω is the angular frequency of a particle in the quantum harmonic oscillator 

(QHO) model in QM, then we can describe the quantization of the Gaussian form of wavefunctions 

in a secondary space and extend it to QCD [18,19]. Hence, using the canonical variables presentation 

and potential interaction based on QFT forms by integral representations  

𝜑ොሺ𝑥ሻ ൌ න𝑑𝑘 𝑎ො 𝑒௜௞௫ො 

𝜑ොାሺ𝑥ሻ ൌ න𝑑𝑘 𝑎ොା 𝑒ି௜௞௫ො 

𝑉ሺ𝑥ሻ ൌ න൬
𝑑𝑘
2𝜋
൰
௡

𝑉෨ሺ𝑘ଶሻ𝑒
൬ି

௞మ
ସఠ൰: 𝑒

௜௞
൫௔ොశା௔ො  ൯

√ଶ௠ఠ : 

𝑉ሺ𝑥ሻ is the potential interactions under Wick's spacetime ordering operators principles, i.e., “: ∎ :”. 

Now, we consider the transformation of radial and momentum variables 𝑟, 𝑝௥ of 𝑅௡ space to the new 

axillary variable 𝑠ଶక ,𝑝௦ of 𝑅ఎ . This axillary space is the secondary space under transformation        

𝑟 ൌ 𝑠ଶక , 𝑝௥ → 𝑝௦, then the wavefunction can be transformed Ψሺ𝑟ሻ → 𝑞ଶకሺ௡ഘିଶ௡ೝሻ𝛷ሺ𝑠ଶሻ, where the 

secondary space has a dimension 

𝜂 ൌ 4𝑠ሺ𝑛ఠ െ 2𝑛௥ሻ ൅ 2𝜉 ൅ 2 ൌ 4ℓ𝜉 ൅ 2𝜉 ൅ 2 

and 𝑛ఠ ൌ 0,1,2,⋯ is the main quantum number in QHO method, 𝑛௥ is the radial excitation number 

𝑛௥ and 𝜉 is a variational parameter and allows us to achieve the physical features of the asymptotic 

behavior of the bound state. To define the mass spectrum of bound states in QFT we use QHO and 

QCD by explaining bound state characteristics under the field conditions such as 
ௗఌሺఓ್ሻ

ௗక
ൌ 0, which 

is described in the next paragraph [9]. Hence, we have to define the parabolic form of canonical 

operators with the normal ordering method in the secondary space, and also consider that the total 

Hamiltonian of the pair 𝑏 െ 𝑏∗ bound states interaction does not contain the core parabolic terms in 

the canonical variables. These conditions are a specific and main point of QHO method in the GBM 
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model and lead us to calculate the oscillator frequency 𝜔௡ೝof the bound state. For the growing 

potential with the core parabolic and Wick-ordered correction terms, we determine the parabolic form 

of canonical operators in the Wick ordering method and then use it in the potential terms. Hence, in 

this paper, we consider only the core parabolic because the nonperturbative and spin interactions are 

not included in our calculation. Hence, the parabolic form of the position operator is defined with the 

Gemma function 

𝑠ଶఛ ൌ 𝜔௡ೝ
ିఛ𝛤 ቀ

𝜂
2
൅ 𝜏ቁ Γିଵ ቀ

𝜂
2
ቁ 

and momentum operator is defined as follows 

𝑝௦ଶఛ ൌ 𝜔௡ೝ
ఛ Γ ቀ

𝜂
2
൅ 𝜏ቁ Γିଵ ቀ

𝜂
2
ቁ  

where 𝜏 ൌ 1,2,3, …., the notation and canonical operators satisfy the commutator form ሾ𝑠̂, 𝑝̂௦ ሿ ൌ 𝑖ℏ,

ሾ𝑎ො, 𝑎ොାሿ ൌ 𝜂. The radial Laplacian operator of RRSE in the secondary space 𝑅ఎ  

൫𝐻௥௘௟ െ 𝐸ሺ𝜇௕ሻ൯Ψሺ𝑟ሻ ൌ 0 

under transformation 𝑟 ൌ 𝑠ଶక  reads 

ௗమ

ௗ௥మ
൅ ௡ିଵ

௥

ௗ

ௗ௥
→ 

ௗమ

ௗ௦మ
൅ ఎିଵ

௦

ௗ

ௗ௦
 

and then RRSE of 𝑏 െ 𝑏∗ bound states within HCP interaction present as follows  

ቄ
௣𝑠మ

ଶ
൅ 𝑉ሺ𝑠ଶ𝜉ሻ െ  𝐸ሺ𝜇𝑏ሻቅ𝛷ሺ𝑞ଶሻ ൌ 0                                                                                                    (9)   

As we know, the spin Hamiltonian is highly significant. However, the primary focus of this 

article is on defining the relativistic effects of bound states using the GBM and QHO methods. 

Therefore, in the supplementary calculations, the spin Hamiltonian 𝐻௦ ൌ 𝐻ௌௌ ൅ 𝐻௅் ൅ 𝐻்் has not 

been incorporated, and its additional effects on the mass spectrum have been neglected. Now, using 

the parabolic form of canonical operators, Eq. (9), RRSE for the excited radial states in secondary 

space under the second quantization within 𝑉ሺ𝑟ሻ ൌ െ𝑉଴
ୣഀೝିୣషഀೝ

ୣഀೝାୣషഀೝ
൅ 𝜎𝑟 HCP is defined in the 

following way [9].  
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𝜀ሺ𝜇௕ሻ ൌ ቊ
ఎఠℓ

 

ସ
൅ 2𝜇௕𝜉ଶ𝑠ସకିଶሺെ𝑉଴

ୣቀഀೞ
మ഍ቁିୣషቀഀೞ

మ഍ቁ

ୣഀቀഀೞ
మ഍ቁାୣషഀቀഀೞ

మ഍ቁ
൅ 𝜎𝑠ଶకሻ െ 2𝜇௕𝜉ଶ𝑠ସకିଶ𝐸 ሺ𝜇௕ሻ ൅

𝑛ఠ𝜔ℓ
 ቋ𝛷ሺ𝑞ଶሻ ൌ 0         (10) 

The ground state 𝑛ఠ ൌ 𝑛௥ ൌ 0, mass spectrum by expanding HCP under the Bernoulli series and 

the parabolic form of the position operator 𝑠ଶఛ and using Eq. (7) reads [20,21]. 

𝑀 ൌ ቀ4𝑚௕
ଶ െ 2𝜇௕

ଶ ௗாሺఓ𝑏ሻ

ௗఓ𝑏
ቁ

1/2
൅

ఓ್
 

2

𝑑𝐸ሺఓ𝑏ሻ

𝑑ఓ𝑏
൅ ൅𝐸ሺ𝜇𝑏ሻ   (11) 

where the ground state energy eigenvalue reads: 

𝐸0ሺ𝜇𝑏ሻ ൌ
𝜔0

2𝜉Γെ1ሺ
𝜂
2
൅2𝜉൅1ሻΓሺ

𝜂
2
൅1ሻ

8ఓ𝑏𝜉
2 ൅

ሺ𝜎െ𝛼𝑉0ሻΓ
െ1ሺ

𝜂
2
൅2𝜉൅1ሻΓሺ

𝜂
2
൅3𝜉൅1ሻ

𝜔0
𝜉 ൅

൫𝛼3𝑉0൯Γ
െ1
ቀ
𝜂
2
൅2𝜉൅1ቁΓቀ

𝜂
2
൅5𝜉൅1ቁ

3𝜔0
3𝜉   (12) 

then minimizing: 

ௗఌሺఓ್ሻ

ௗక
ൌ 0 and  

ௗఌሺఓ್ሻ

ௗఠ
ൌ 0           

the ground state oscillator frequency 𝜔଴ and energy eigenvalue function is defined using the relation 

ௗாሺఓ್ሻ

ௗఓ್
ൌ െ

ఠబ
మ഍୻షభሺആ

మ
ାଶకାଵሻ୻ሺആ

మ
ାଵሻ

଼ఓ್
మకమ

 in the above equations, then define the oscillator frequency 𝜔଴ as 

follows: 

𝜔଴
ହక െ

ସሺఙିఈ௏బሻ𝜇್క
మ୻ቀ

ആ
మ
ାଷకାଵቁ

୻ ቀ
ആ
మ
ାଵቁ

𝜔଴
ଶక െ

ସሺఈయ௏బሻ𝜇್క
మ୻ቀ

ആ
మ
ାହకାଵቁ

୻ ቀ
ആ
మ
ାଵቁ

ൌ 0     (13) 

And the constituent mass as a relativistic effect on mass in the vacuum state 𝜇௕
  reads 

𝜇௕ ൌ ቆ𝑚௕
ଶ ൅

Γሺ
𝜂
2
൅1ሻ𝜔0

2𝜉

16𝜉2Γ ሺ
𝜂
2
൅2𝜉൅1ሻ

ቇ
1/2

   (14) 

Now, based on (10) and (12), we can define the mass spectrum, energy eigenvalue, and oscillator 

frequency in the highly radial resonance states 𝑛௥ ൌ
௡ഘିℓ

ଶ
 by equations [22]: 

𝐸𝑛𝑟ሺ𝜇𝑏ሻ ൌ ሺ
1

8
൅

𝑛𝑟
𝜂
ሻ

Γሺ
𝜂
2
൅1ሻ

ఓ𝑏𝜉
2Γ ሺ

𝜂
2
൅2𝜉൅1ሻ

𝜔𝑛𝑟
2𝜉 ൅

ሺ𝜎െ𝛼𝑉0ሻΓሺ
𝜂
2
൅3𝜉൅1ሻ

Γ ሺ
𝜂
2
൅2𝜉൅1ሻ𝜔𝑛𝑟

𝜉 ൅
൫𝛼3𝑉0൯

 
Γቀ

𝜂
2
൅5𝜉൅1ቁ

3Γ ሺ
𝜂
2
൅2𝜉൅1ሻ𝜔𝑛𝑟

3𝜉   (15) 

and 
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𝜔௡ೝ
ହక െ

ሺఙିఈ௏బሻ𝜇್క
మ୻ቀ

ആ
మ
ାଷకାଵቁ

ሺ
భ
8ା

೙ೝ
ആ
ሻ୻ቀ

ആ
మ
ାଵቁ

𝜔௡ೝ
ଶక െ

ሺఈయ௏బሻ𝜇್క
మ୻ቀ

ആ
మ
ାହకାଵቁ

ସሺ
భ
ఴ
ା
೙ೝ
ആ
ሻ୻ ቀ

ആ
మ
ାଵቁ

ൌ 0                                                                  (16) 

The constituent mass 𝜇௕
  of the highly bound states reads 

𝜇௕ ൌ ቆ𝑚௕
ଶ ൅ 2ሺ

1

8
൅

𝑛𝑟
𝜂
ሻ

Γሺ
𝜂
2
൅1ሻ𝜔𝑛𝑟

2𝜉

𝜉2Γ ሺ
𝜂
2
൅2𝜉൅1ሻ

ቇ
1/2

                                                                                                (17) 

Now we calculate the mass spectra of Bottomia using the nonrelativistic (1) and relativistic (2) 

equations [11], and the results of Bottomia bound states in QHO and GBM model are presented using 

specific parameters [23] in Table 1.  

𝑚௕ ൌ 𝑚௕∗ ൌ 4.823𝐺𝑒𝑉 

𝑉଴ ൌ 1.1𝐺𝑒𝑉,      𝛼 ൌ 0.1𝐺𝑒𝑉 

  𝜎 ൌ 0.25𝐺𝑒𝑉ଶ 

We choose parameters to adjust the calculation of the mass spectrum based on theoretical data 

from other sources and experimental results. However, these parameters are defined only at the 

extreme point of bound state formation and are not adjusted in this calculation for long-range stability 

of bound states, and also, we consider    𝑎 ൌ 𝜎 െ  𝑉଴𝛼 ൐ 0,   𝑎 ് 0, 𝑉0 ് 0  which are extreme values 

solely for the creation of bound states, especially for highly resonant states. Hence, we can use 

experimental data and compare these values. Despite the predicted heavy mass of 𝑏 െ 𝑏∗in the highly 

radial excitation 𝑛௥ ൌ 7, 8,9,10 states such 7s:Υሺ10860ሻ and 10s:Υሺ11020ሻ, the relativistic effects 

become more apparent, leading to significant internal motion and increasing the relativistic behavior 

of 𝑏 െ 𝑏∗ bound state. We defined quantitative error analysis using Root Mean Square Error (RMSE), 

which measures the difference between the relativistic and nonrelativistic values based on our 

approach to calculating the masses of bound states and comparing them with experimental data. All 

values in our calculations are in GeV. 
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Table 1. Comparison of the mass spectrum in the lower and higher states of Bottomia  

 𝑴𝒏𝒐𝒏𝒓𝒆𝒍 𝑴𝒓𝒆𝒍  𝝁𝒃 𝑴𝐓𝐡    𝑴𝐄𝐱𝐩 
  RMSE 

𝒏𝒐𝒏𝒓𝒆𝒍 
RMSE 
𝒓𝒆𝒍 

𝟏𝒔: 𝚼ሺ𝟗𝟒𝟔𝟎𝟑ሻ 9.2692 9.4582 4.8390 9.463 [25-27] 9.4603 [11] 0.1913 0.0021 

𝟐𝒔: 𝚼ሺ𝟏𝟎𝟎𝟐𝟑ሻ 10.2354 10.3068 4.9048 10.023[23,28] 10.023 [24] 0.2125 0.2840 

𝟕𝐬:𝚼ሺ𝟏𝟎𝟖𝟔𝟎ሻ 10.6709 10.8424 5.0039 10.887 [23] 10.885 [24] 0.2144 0.0421 

𝟏𝟎𝐬:𝚼ሺ𝟏𝟏𝟎𝟐𝟎 10.8296 11.0522 5.0513 11.021 [23] 11.020 [24] 0.1904 0.0322 

 

In this paper, we study this effect on the mass spectra and describe how this correction affects 

the shape of the potential interaction. In this article, we include in our calculation only the kinetic and 

the mass-dependent terms, and the effective potential related to the relativistic mass correction. The 

effective potential that is described in this research under QHO and GBM models based on the 

Schrödinger equation  

ቀ
ିଵ

ଶఓ್
ቀ
ௗమ

ௗ௥మ
൅ ௡ିଵ

௥

ௗ

ௗ௥
ቁ ൅

ℓሺℓାଵሻ

ଶఓ௥మ
െ 𝑉଴

ୣഀೝିୣషഀೝ

ୣഀೝାୣషഀೝ
൅ 𝜎𝑟ቁΨሺ𝑟ሻ ൌ 𝐸ሺ𝜇௕ሻΨሺ𝑟ሻ →   

ቊ
௣ೞమ

ଶ
൅ 2𝜇௕𝜉ଶ𝑠ସకିଶሺെ𝑉଴

ୣቀഀೞ
మ഍ቁିୣషቀഀೞ

మ഍ቁ

ୣഀቀഀೞ
మ഍ቁାୣషഀቀഀೞ

మ഍ቁ
൅ 𝜎𝑠ଶకሻቋ𝛷ሺ𝑞ଶሻ ൌ 𝐸ሺ𝜇௕ሻ𝛷ሺ𝑞ଶሻ  

determines as follows  

𝑉௘௙௙ሺ𝑠ሻ ൌ 2𝜇௕𝜉ଶ𝑠ସకିଶሺെ𝑉଴
ୣቀഀೞ

మ഍ቁିୣషቀഀೞ
మ഍ቁ

ୣቀഀೞ
మ഍ቁାୣషቀഀೞ

మ഍ቁ
൅ 𝜎𝑠ଶకሻ                                                                                   (18) 

and presents a short-range attractive term and a long-range confinement term including the effect of 

ℓ - the angular momentum quantum number, that appears in given parameters 𝜇௕, 𝜉 in the following 

form 

𝜇௕ ൌ ቆ𝑚௕
ଶ ൅ 2ሺ

1

8
൅

𝑛𝑟
4ℓ𝜉൅2𝜉൅2

ሻ
Γሺ

4ℓ𝜉൅2𝜉൅2
2

൅1ሻ𝜔𝑛𝑟
2𝜉

𝜉2Γ ሺ
4ℓ𝜉൅2𝜉൅2

2
൅2𝜉൅1ሻ

ቇ
1/2

                                                                                   (19) 

𝑑

𝑑𝜉
ቈሺ

1

8
൅

𝑛𝑟
4ℓ𝜉൅2𝜉൅2

ሻ
Γሺ

4ℓ𝜉൅2𝜉൅2
2

൅1ሻ

ఓ𝑏𝜉
2Γ ሺ

𝜂4ℓ𝜉൅2𝜉൅2
2

൅2𝜉൅1ሻ
𝜔𝑛𝑟

2𝜉 ൅
ሺ𝜎െ𝛼𝑉0ሻΓሺ

4ℓ𝜉൅2𝜉൅2
2

൅3𝜉൅1ሻ

Γ ሺ
4ℓ𝜉൅2𝜉൅2

2
൅2𝜉൅1ሻ𝜔𝑛𝑟

𝜉 ൅
൫𝛼3𝑉0൯

 
Γቀ

4ℓ𝜉൅2𝜉൅2
2

൅5𝜉൅1ቁ

3Γ ሺ
4ℓ𝜉൅2𝜉൅2

2
൅2𝜉൅1ሻ𝜔𝑛𝑟

3𝜉  
቉ ൌ 0          (20)    

Now, to plot the shape of the effective potential based on the non-RRSE and RRSE, we use the 

relativistic and nonrelativistic mass spectra and the constituent mass of quarks in 1s:Υሺ94603ሻ in the 
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ground state 𝑛 ൌ 0, ℓ ൌ 0,𝑛௥ ൌ 0, 2s:Υሺ10023ሻ in the first excited state and two predicted highly 

excited states 7s:Υሺ10860ሻ and 10s:Υሺ11020ሻ. The results of shape, depth, and asymptotic lines 

of potential are affected by changing the reduced mass of 𝑏 െ 𝑏∗ bound state. From the curve and 

the  shape of  the effective potential  function, we  can determine  the minimum point where  the 

transition is created and how steep and potential wall behaviors give us the properties of the bound 

state. As we can see in the relativistic and nonrelativistic plots in Figures 1 and 2, the mass of the 

bound state changes the curvature of the curve of the potential shape. In the highly bound state 

mass value (highly resonance states), the shape becomes deeper, which allows us to determine the 

minimum energy eigenvalue in the mass spectra of the bound states. These properties can help us 

to understand the bound states' internal dynamics. In high energy physics, properties of potential 

interaction are an interesting open question for future research at LHC, Super KEKB accelerator 

(Belle II), ALICE Experiment, LHCb Experiment, CMS, and ATLAS. Therefore, by plotting HCP with 

different potential parameters, we can explain how sensitive mass spectra and shape of potential 

in QHO and GBM models and analyze the experimental data. The form of the plot and the depth of 

the potential well can be used to assign the other hadronic states to be constituted of more than two 

quarks. Based on QHO and GBM models, one can get a suitable HCP to explain the dynamics of the 

hadronic bound states by relativistic correction on mass without involving spin interactions. 3D HCP 

shapes and mass spectra based on non-RRSE and RRSE can represent how sensitive the depth of 

potential is well to the relativistic mass correction. The results of relativistic correction on the 

effective potential of Bottomia bound states have been performed in MATLAB R2021a software and 

Excel 2022 and they are presented in Fig. 1 and Fig. 2.  
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Fig. 1. Effective potential well with the relativistic correction on mass 

1𝑠: Υሺ94603ሻ, 2𝑠: Υሺ10023ሻ, 7s:Υሺ10860ሻ, 10s:Υሺ11020ሻ 

Fig. 2. Multiple surfaces of the effective potentials: left (RRSE) and right (non-RRSE) of   

1𝑠: Υሺ94603ሻ, 2𝑠: Υሺ10023ሻ, 7s:Υሺ10860ሻ, 10s:Υሺ11020ሻ 
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4. Conclusion

This study concentrates on describing the asymptotic behavior of the polarization loop function

in the quantum gauge interaction to define the mass spectrum of bound Bottomia states under the 

relativistic correction on the mass of constituent particles in high energy physics. Comparing 

nonrelativistic mass spectra and relativistic correction on mass spectra based on the modified 

Schrödinger equation, we can conclude that our results may explain and predict resonance states using 

3D HCP well’s shape of the pair 𝑏 െ 𝑏∗ bound states. Based on Table 1, a conclusion of the results 

which are defined analytically using QHO and GBM models, we may summarize the main concepts 

as follows:  

1- The modified Schrödinger equation under the relativistic correction on mass is investigated by

applying QHO and GBM models.

2- The exponential and linear confinement type of potential is used to determine the mass spectra of

Bottomia 1𝑠: Υሺ94603ሻ,  2𝑠: Υሺ10023ሻ, 7s:Υሺ10860ሻ, and 10s:Υሺ11020ሻ.

3- The analytical expression of the constituent mass 𝜇௕ and reduced mass 𝜇 ൌ ఓ್
ଶ

 are presented. 

Results are used for describing mass spectra under relativistic and nonrelativistic formalisms. 

4- Defined numerical results are compared with the experimentally well-established low-level states

1𝑠: Υሺ94603ሻ, 2𝑠: Υሺ10023ሻ and high resonance states 7s:Υሺ10860ሻ, and 10s:Υሺ11020ሻ. For these

S-wave states, our calculation has the percent differences, computed as

𝚫𝑴%

𝟏𝒔: 𝚼ሺ𝟗𝟒𝟔𝟎𝟑ሻ -0.02

𝟐𝒔: 𝚼ሺ𝟏𝟎𝟎𝟐𝟑ሻ +2.83

𝟕𝐬:𝚼ሺ𝟏𝟎𝟖𝟔𝟎ሻ -0.39

𝟏𝟎𝐬:𝚼ሺ𝟏𝟏𝟎𝟐𝟎ሻ 0.29 +

In the first excited state, our value is about +2.83 % larger than the experimental one; the reason 

for this difference can be found in the total Hamiltonian of interactions. In the Bottomia 
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Hamiltonian of hyperfine (triplet and singlet levels), spin–orbit and tensor interactions are 

important. On the other hand, the nonperturbed Hamiltonian term that includes relativistic 

behavior of potential interaction and high temperature conditions can shift the mass spectra to 

some disagreement with experimental data. 

5- We used purely static potential, no perturbative loop corrections, and no higher-order momentum‐

dependent terms 𝑝௦ଶఛ with 𝜏 ൌ 2,4, …, hence these terms can justify some disagreement with our

results with experimental data. Therefore, as we know, the first radial excited state feels the short-

distance Coulombic potential more than the ground state. Since we did not directly include αs as

a coupling constant, it makes the first radial existing state mass spectrum ൅2.83 too heavy.

6- Using the boundary condition of potential depth 𝑉଴, theoretically calculated and predicted by

applying QHO and GBM models, other higher resonance states, such as 11s and 12s. With the

relativistic bound state masses 11.1148, 11.1748, and nonrelativistic 10.8758, 10.9195, the

constituent mass of the bottom quark 5.0662 and 5.0809 are determined in 11𝑠 and 12𝑠 states,

which have not been confirmed and discovered yet [29,30].

QHO and GBM methods used in this theoretical research can be one of the most concrete works 

in the calculation and prediction of hadronic bond states. Therefore, theoretical calculations with 

optimized and modified potentials for the structure of the strong interaction can provide new and 

different approaches, especially in perspectives in particle physics, as accelerator and LHC 

technologies continue to expand and become stronger. One of these approaches is discussed in this 

article. This approach describes the behavior and properties of the bound Bottomia within the 

relativistic mass correction. 

Acknowledgment 

The author would like to acknowledge the use of AIA and tools to improve the grammar and 

clarity of this manuscript. All intellectual content and conclusions are solely those of the author. We 

Jo
urn

al 
Pre-

pro
ofs



Journal Pre-proofs

18

are indebted to the referees and are very grateful to the referee for the careful reading of the paper 

and for their comments and detailed suggestions which helped us to improve considerably 

the manuscript. 

Funding 

The theoretical research described here was supported by Foundation grant 1404. 

References 

[1] J. Yoh. The discovery of the b quark at Fermilab in 1977: The experiment coordinator’s story,

AIP Conf. Proc., 424 (1998) 29–42. https://doi.org/10.1063/1.55114

[2] D. Asner, H. Atmacan, et al. Belle II Executive Summary, arXiv:2203.10203v2, [hep-ex],

(2022). https://doi.org/10.48550/arXiv.2203.10203

[3] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. Shen, et al. The xyz states: experimental

and theoretical status and perspectives, Phys. Rep., 873 (2020) 1-154.

https://doi.org/10.1016/j.physrep.2020.05.001

[4] C. Bokade, Bhaghyesh. Predictions for bottomonium from a relativistic screened potential model,

arXiv: 2501.03147v1 [hep-ph], (2025). https://arxiv.org/pdf/2501.03147v1

[5] Zh. Tang, et al. Quarkonium spectroscopy in the quark-gluon plasma, arXiv:2502.09044v1 [nucl-

th]  (2025). https://doi.org/10.48550/arXiv.2502.09044

[6] D., Fujiwara. Rigorous Time Slicing Approach to Feynman Path Integrals, 1st ed. Springer

International Publishing, (2017).

[7] J. Struckmeier. Relativistic generalization of Feynman’s path integral based on extended

Lagrangians. arXiv:2406.06530v1[quant-ph], (2024).

https://doi.org/10.48550/arXiv.2406.06530

[8] G. Semenoff. Quantum Field Theory, 1st ed. Springer International Publishing, (2023).

Jo
urn

al 
Pre-

pro
ofs



Journal Pre-proofs 

 

19 
 

[9] M., Dienykhan, G., Efimov, G., Ganbolds, N., Nedelko. Oscillator Representation in Quantum 

Physics (Lecture Notes in Physics Monographs), 1st ed. Springer International Publishing, 

(1995). 

[10] W. Greiner, S. Schramm, W. Stein. Quantum Chromodynamics, 3rd ed. Springer International 

Publishing, (2007). 

[11] R., Gould. Quantum Electrodynamics. Electromagnetic Processes, 1st ed. Springer- Verleg 

International Publishing, (2020). 

[12] S. Albeverio, R. Høegh-Krohn, S. Mazzucchi. Mathematical Theory of Feynman Path Integrals, 

1st ed. Springer- Verleg International Publishing, (2008). 

[13] E. Copson. Asymptotic Expansions:  The saddle-point method”, 1st ed. Cambridge University 

Press, (2009). 

[14] K. Barley, J. Vega-Guzm, A.  Ruffing, S. Suslov. Discovery of the relativistic Schrödinger 

equation, Journal uspekhi fizicheskikh nauk, Russian Academy of Sciences, 65 (1) (2022) 90 -

103. https://doi.org/10.3367/ufne.2021.06.039000 

[15] V. Badalov, S.  Badalov. Generalised tanh-shaped hyperbolic potential: klein–gordon equation's 

bound state solution, Communications in Theoretical Physics, 75 (2023) 075003. 

https://doi.org/10.1088/1572-9494/acd441 

[16] V. Kher, R. Chaturvedi, N. Devlani, and A. K. Rai. Bottomonium spectroscopy using Coulomb 

plus linear (Cornell) potential, Eur. Phys. J. Plus, 137 (2022) 1. 

https://doi.org/10.1140/epjp/s13360-022-02538-5 

[17] W. Kutzelnigg. Theory of the expansion of wave functions in a Gaussian basis, Quantum 

chemistry journal, 51 (6) (1994) 447-463. https://doi.org/10.1002/qua.560510612 

[18] M., Rushka, J., Freericks. A completely algebraic solution of the simple harmonic oscillator, Am 

J Phys. 88 (11) (2019) 976–985. https://doi.org/10.1119/10.0001702 

Jo
urn

al 
Pre-

pro
ofs



Journal Pre-proofs 

 

20 
 

[19] J., Kelley, J., Leventhal, “Ladder Operators for the Harmonic Oscillator. Problems in Classical 

and Quantum Mechanics”, Springer International Publishing, (2017).  

[20] D.H. Lehmer. On the Maxima and Minima of Bernoulli Polynomials, American Mathematical 

Monthly, 47 (1940) 533–538. https://doi.org/10.2307/2303833 

[21] Zhi-Wei Sun, Hao Pan. Identities concerning Bernoulli and Euler polynomials, Acta Arithmetica. 

125 (2006) 21–39. https://doi.org/10.48550/arXiv.math/0409035 

[22] A. Shafie, J. Naji, et al., Approximation and analytical study of the relativistic confined two 

particles state within the complex potential in the isotropic medium, Journal of Particle Science 

and Technology, 9 (2) (2023) 85-101. https://doi.org/10.22104/jpst.2024.6528.1243 

[23] A. Ahmadov, K. Abasova, M. Orucova.  Bound state solution Schrödinger equation for extended 

Cornell potential at finite temperature, Advances in High Energy Physics, 1861946 (2021) 1-13. 

https://doi.org/10.1155/2021/1861946 

[24] Particle Data Group. Progress of Theoretical and Experimental Physics, 083C01. (2020) 

[25] V. Badalov, et al. Dirac equation solution with generalized tanh-shaped hyperbolic potential: 

application to charmonium and bottomonium mass spectra), arXiv:2409.15538v3[hep-ph] 

(2025). https://doi.org/10.48550/arXiv.2409.15538  

[26] M. Abu-Shady. Heavy Quarkonia and bc* mesons in the Cornell potential with harmonic 

oscillator potential in the N-dimensional, International Journal of Applied Mathematics and 

Theoretical Physics, 2 (2) (2016) 16-20. https://doi.org/10.11648/j.ijamtp.20160202.11 

[27] B. Bukor, J. Tekel. On quarkonium masses in 3D non-commutative space, Eur. Phys. J. Plus 138 

(2023) 499. https://doi.org/10.1140/epjp/s13360-023-04049-3 

[28] K. Purohit, A. Rai. Quarkonium spectroscopy of the linear plus modified Yukawa potential, 

Physica Scripta, 97 (4) (2022) 044002. https://doi.org/10.1088/1402-4896/ac5bc2 

[29] Q. Li, et al. Canonical interpretation of Y (10750) and Υ (10860) in the Υ family, Eur. Phys. J. 

C 80 (1) (2020) 1-11. https://doi.org/10.1140/epjc/s10052-020-7626-2 

Jo
urn

al 
Pre-

pro
ofs



Journal Pre-proofs 

 

21 
 

[30] J.Wang, X. Liu. Identifying a characterized energy level structure of highly charmonium well 

matched to the peak structures in e+e− → π+ D0D∗, Phys. Lett. B, 849 (2024) 138456. 

https://doi.org/10.48550/arXiv.2306.14695 

 

Jo
urn

al 
Pre-

pro
ofs




