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The present study aims to investigate the thermal properties of low-quantum structures (LQS) 
with a described non-central potential. Additionally, the study investigates the influence of 
relativistic parameters such as the constituent mass (effective mass) of particles and the effect 
of thermal properties. The magnitude of distortion of an LQS due to a non-central potential was 
found to have a profound effect on the system's quantum and thermal properties, which is crucial 
to understanding the behavior of practical quantum systems in an LQS. This paper studies the 
critical concepts in the fundamental optimization of mass and thermal properties of interactions 
in LQS based on canonical operators. It explores and analytically calculates the radial part of 
the Schrödinger equation at finite temperatures with two intertwined spaces using the normal 
ordering method in a combination of the Coulomb potential and the distortion potential. We 
provide analytical expressions for the ground state energy eigenvalues to define the zeroth 
approximation with the quantum and thermal effect and properties. Results showed that the 
energy of a system decreases with an increase in temperature and strength of the distortion.
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1. Introduction 

In recent decades, the field of  LQS has proven to be an 
important foundation of many applications in numerous 
research areas. Both theoretical and experimental exploration 
and analysis of their physical, magnetic, and electronic 
properties have been immensely important, especially 
concerning thermal effects, and have resulted in various 
optoelectronic devices, photodetectors, batteries, and sensors, 
among others. Applications in fields related to energy, bound 
state mass, and interactions between particles are also possible 
by exploiting thermal and distorted orientation properties. 
This issue directly increases the accuracy of theoretical 
and experimental results in these fields. In recent years, 
theoretical physicists have become increasingly interested in 
the study of the relativistic and thermal properties of low-
dimensional systems [1,2]. There is a persistent effort to 
create advanced LQS that feature tunable thermal, electrical, 
optical, and magnetic properties, as well as a wide range 
of applications. LQS is a type of nanoscale structure that 
exhibits quantum mechanical properties due to its small 
size and unique geometry. LQS is typically composed of 
semiconducting materials, such as gallium arsenide, and has 
a thickness of a few nanometers and a diameter of tens or 
hundreds of nanometers [3,4]. The small size of quantum 
disks results in the quantization of electronic energy levels, 
leading to discrete and closely spaced energy levels [5]. This 
can result in unique optical and electronic properties, such 
as strong quantum confinement effects, high absorption and 
emission rates, and the ability to confine and manipulate 
individual electrons. 

LQS have a wide range of potential applications in various 
fields, such as optoelectronics, nano-photonics, and quantum 
computing. Researchers are actively studying LQS to better 
understand their properties and optimize their performance 
for specific applications. LQS are comparable in size to the 
charge carrier's de-Broglie wavelength and are classified as 
either quantum dots, wires, or disks/wells, depending on the 
number of dimensions that restrict the carrier movement [6]. 
Among LQS, 2D quantum dots (quantum disks) have been 
extensively studied due to their myriad applications in fields 
such as optoelectronics, energy storage, sensors, batteries, and 
photodetectors [6,7]. Compared to their bulk counterparts, 
LQS quantum disks’ unique properties are attributed to their 
quantum and thermal effects. The increasing demand for 
developing advanced LQS devices with quantum and thermal 
tunable thermal properties has become a continuous endeavor 
[3-5]. LQS have the potential to open up new research 
frontiers in low dimensional hi-technology due to their 
unique properties, which make them promising candidates 
for next-generation advanced materials. 

In LQS, the distortion effect is caused by the distortion 
potential, which refers to the potential energy arising from 
deformations in the shape of the disk due to external forces 
or interactions with other inside particles. The distortion 
potential refers to a potential energy surface in 2D systems 
that describes the potential energy of particles or bound states, 
such as exciton, as a function of the vibrational coordinates 
[3-5]. The distortion potential arises from the fact that the 
potential energy of excitons can be affected by changes in 
their geometry. In particular, it describes how changes in the 
bond lengths, bond angles, and torsion angles of an exciton 
affect their potential energy. For example, if an exciton is 
stretched along its bond, the distortion potential will describe 
how the potential energy changes as a function of the bond 
length. Similarly, if an exciton is twisted around its torsion 
angles, the distortion potential will describe how the potential 
energy changes as a function of the torsion angle, especially 
important in strong electron-electron interactions and the 
presence of a strong magnetic field. 

The distortion potential is important in spectroscopy 
because it affects the frequencies and intensities of the 
vibrational transitions that a molecule can undergo. By 
studying the distortion potential of a molecule, researchers 
can gain insights into its structure, conformational dynamics, 
and chemical reactivity. These deformations can lead to 
changes in the electronic structure and the energy levels of 
the LQS, which can affect its properties and behavior [8,9]. 
The distortion potential is a key factor in determining the 
electronic and optical properties of LQS, and it is often 
used in theoretical models to describe the behavior of these 
systems. The magnitude and nature of the distortion potential 
can depend on various factors, including the size and shape 
of the disk, the composition of the disk material, and the 
external environment. The study's results are expected to 
provide guidelines for tuning LQS properties, which will aid 
the development of practical low-dimensional devices. The 
remainder of this research is laid out in the following manner: 
introducing a Sturmian representation in two intertwined 
spaces and describing the behavior of distortion potentials 
in LQS, explaining exciton in the distortion Coulombic 
potential, and  presenting the numerical calculation of the 
mass spectrum and energy eigenvalue of the exciton using 
quantum and thermal behavior.

2. The behavior of distortion potentials in LQS 

Understanding the distortion potential is essential for 
developing accurate models of LQS and predicting their 
behavior in different applications. As we know, distortion 
behavior in a quantum disk can exist even without an external 
field [9]. Distortion can arise from purely quantum mechanical 
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effects, such as the Coulomb interaction between electrons or 
electron holes as a disk's bound state system or the disk shape's 
inherent anisotropy [8]. These effects can cause deformations 
in the disk shape, which in turn can lead to changes in the 
electronic structure and energy levels of the disk, affecting 
its optical and electronic properties. The distortion potential 
can also arise from the interaction between the quantum disk 
and its surrounding environment, such as the substrate on 
which it is grown [9,10]. Therefore, even in the absence of 
an external field, the distortion potential can still be present 
and significantly affect an LQS’s properties and behavior. An 
electrically neutral quasi-bound state, known as the exciton, 
exists within all LQS [7,9].  

In this article, the potential interactions of exciting 
oscillating quantum systems (excitons inside the LQS) with 
the topology of the 2D semiconductors quantum disk in 
spherical coordinates are shown in Fig. 1, and the radius of 
the disk r0, and boundary conditions through the potential are 
given by r < r0.

This exotic bound state is comprised of a negatively charged 
electron and a positively charged hole, which are attracted 
to each other by the electrostatic Coulomb interaction. 
Experimentation on LQS led to the discovery of these bound 
states [10], demonstrated the potential for the existence of 
multi-exciton states [11], and generated significant interest 
in their properties, particularly concerning the strength of 
distortion and the angular position of the distortion. Hence, 
LQS is described by the combination of the Coulomb 
potential and the distortion potential (ℏ = c = 1) in the polar 
coordinates (r,φ) as follows (Eq. (1)) [11,12]:
						             
						             (1)

where U(r,φ) is the potential of the azimuthal distortion that 
exists due to a hydrogenic impurity that has an electronic 

structure similar to that of a hydrogen atom with η (the phase 
of distortion) the angular position of the distortion, βd is the 
strength of the distortion and the φ-dependent azimuthal 
distortion potential. U(r) is the Columbic interaction in the 
LQS with εr the relative static dielectric constant. In this 
study, we first present the azimuthal distortion effect on 
quantum disk and its quantum and thermal properties based 
on exciton bound state. Then, we try to describe the impurity 
effect using the radial Schrödinger equation of exciton-bound 
states and define the energy eigenvalue of ground and excited 
states. 

The electronic properties of hydrogenic impurities in 
semiconductors have been extensively studied, as they 
can significantly modify the electrical conductivity of the 
host material. For example, doping silicon with boron, a 
hydrogenic impurity, can increase the material's electrical 
conductivity and make it a p-type semiconductor [13].  
Similarly, doping silicon with phosphorus, which is also a 
hydrogenic impurity, can increase the electron density in the 
material and make it an n-type semiconductor. Hydrogenic 
impurities can also be used as quantum bits (qubits) for 
quantum computing, as the electronic states of the impurity 
atoms can be manipulated and measured with high precision.  
For simplicity, the mass spectrum and thermal properties of 
the LQS are generally studied without external interactions. 
Furthermore, as mentioned above, the quantum harmonic 
oscillator, a main unique internal interaction, is an important 
application and model to describe bound state particles in 
LQS. Harmonic oscillator eigenvalue problems can be solved 
analytically when the exact solution of a problem cannot 
be found; it is advantageous to use approximation methods 
such as perturbation theory [14]. The perturbation theory 
approach has been adopted in several approaches to calculate 
and determine the energy eigenvalues of the ground and 
excites states of excitons. Theoretically, using a harmonic 
oscillator method and boundary conditions of the bound 
state, the quantum and thermal properties of the bound state 
inside LQS can be solved, providing better experimental 
results and potential new LQS-based equipment for advanced 
technologies. 

These perturbed harmonic oscillators may be calculated 
using computational and analytical methods with theoretical 
contributions. This study used the two intertwined spaces, 
based on the normal ordering method, which significantly 
contributes to approximating and developing mathematical 
techniques for finding the eigenvalues and eigenfunctions 
of quantum systems with harmonic oscillator main potential 
and potential in Eq. (1). The normal ordering method is a 
useful analytical method for solving and approximating 
the Schrödinger equation in quantum mechanics [14]. 
It is based on the idea of separating the potential into a Fig. 1. 2D LQS in spherical coordinate presentation.
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nonperturbative and perturbative part, which is then treated 
separately. The nonperturbative part of the potential can be 
solved exactly, while the perturbative part can be treated as 
a perturbation to the nonperturbative part. This method has 
been successfully applied to study bound systems in various 
conditions, including the exciton state in this research. Also, 
in the analysis of the characteristic of the bound states, a 
transformation from one space to another space is considered 
to obtain the answer. These intertwined spaces based on the 
normal ordering method are a useful analytical method for 
solving and approximating the Schrödinger equation, and it 
has been successfully applied to study LQS systems [6,14].  

The purpose of this research is to use the perturbation and 
approximate solution method to calculate the zero-energy 
correction and obtain the generalized energy eigenvalues for 
exciton with thermal properties. It explores the Schrödinger 
equation at finite temperatures, applying and implementing 
the presented transformation and intertwined two-space 
method for potential parts. We provide analytical expressions 
for the energy eigenvalues and mass spectrum.

2.1. Transformation and intertwined two spaces method

The article introduces a method for solving the LQS 
problems based on the Schrödinger equation, which utilizes 
the Sturmian representation to analyze the exciton properties 
in the distortion/Coulombic potential. The Sturmian function 
is a set of eigenfunctions of the Schrödinger equation, which 
is helpful in addressing specific LQS problems that involve 
Schrödinger wave functions. Using this approach, the author 
aims to provide a more effective means of understanding the 
behavior and properties of LQS.

The Sturmian function

is the solution of the radial part of the Schrödinger equation 
[14], where n is the principal quantum number and l is the 
angular quantum number. These functions, Snl(r), have a 
notable benefit over Schrödinger functions when used as a 
basis for expansion since they create a complete set that is 
not continuous, regardless of the potential between particles. 
Three key conditions must be satisfied when choosing 
a different expansion basis of intertwined spaces for the 
coupled electron-hole state. Firstly, the series must approach 
convergence at a reasonable rate. Secondly, the continuum 
and its inherent complexity must be avoided to justify the use 
of the new series over a usual eigenvector and eigenfunction 
series. Lastly, the boundary constraints set and restrictions 
imposed by the new functions must be elementary and 
uncomplicated. For instance, quantum harmonic oscillator 

wave functions satisfy the second condition and requirement 
but at the expense of losing and overburdening the simplicity 
of their asymptotic behavior of boundary conditions, which 
makes synthesizing an outgoing spherical symmetric wave 
difficult. However, we have discovered a set of functions that 
satisfies the second and third requirements. 

Rosner, Quigg, and Gazeau were dealing with the same 
topic [12]. They drew attention to the fact that the origin of 
the Sturmian representation and changing the independent 
coordinate can describe electron-hole bound states problems 
related to the Schrödinger equation [12]. The mechanism 
of transforming the independent parameter has long been 
a useful strategy to solve the Schrödinger equation with 
different type potentials, like the V(r,θ,φ) ≈ ∑rα potential, 
especially with the bound state interaction. The potential 
V(r,θ,φ) ≈ ∑rα with a variable exponent is a flexible resource 
that can be utilized to analyze the actions of systems where 
particles interact with one another, and its usefulness extends 
to various areas and branches of physics, including condensed 
matter physics, nanophysics, and semiconductor physics. In 
this article, the study of coupled electron-hole involves the 
use of the distortion Coulombic potential because it can 
define the quantum and thermal properties of LQS. The 
exciton state issues in LQS can be naturally explained using 
the origin of the Sturmian representation and the equivalence 
transformed space for the electron-hole bound state. In cases 
where solutions for V(r,θ,φ) are not available, a more general 
equivalence emerges as a change of variable in the total wave 
function Ψ(r,θ,φ) = ℜ(r)Θ(θ)Φ(φ) for the large and short 
distances as follows:

Ψ(r,θ,φ)r→∞ ≈ e-a(r)R(r) ≈ e-r1+σℜ(r)	  	        (2)

Ψ(r,θ,φ)r→0 ≈ r((D-1)/2)ℜ(r)	 	        		        (3)

where r = q2ρ, ρ = 1/(1+σ), and σ ≥ 0, which can be used 
to map the nonrelativistic Schrödinger equation ĤΨ(r,θ,φ) 
= EnlΨ(r,θ,φ) and its solutions for V(r,θ,φ) ≈ ∑rα potential 
types [13]. For different values of α, the coupled system has 
to create bound states, with boundary conditions on the wave 
functions being linked by this transformation. If we focus 
on long distances limit and use analytical methods, we can 
typically determine the asymptotic properties and long-term 
behavior of the wave function as follows:

						             (4)    

for r → ∞, where a(r) can be obtained for certain classes of 
potentials. For large distance potentials, such as Coulomb 
(α ≤ 0), σ = 0. 

From the previous references to physics, we have realized 

� 𝑑𝑑�𝑟𝑟
�

�
𝑆𝑆���𝑟𝑟� �� ℏ�

2𝜇𝜇
𝑑𝑑�
𝑑𝑑𝑑𝑑� �

𝑙𝑙�𝑙𝑙 � 1�ℏ�
2𝜇𝜇𝜇𝜇� � ���𝑈𝑈�𝑟𝑟� � ����

 
𝑆𝑆���𝑟𝑟� � 0 

Ψ�𝑟𝑟�𝑞𝑞��,𝜃𝜃,φ� � 𝑒𝑒������� 
�
���



A. Jahanshir / Journal of Particle Science and Technology 9 (1) (2023) 19-27 23

that the concept of harmonic oscillators hold significant 
relevance across various areas of physics, with it being a 
crucial tool for modeling physical systems. The harmonic 
oscillator analogy is extensively employed in attempts to 
solve quantum mechanical problems, as many physical 
scenarios can be mapped onto a harmonic oscillator with 
appropriate boundary conditions. This stems from the fact 
that the harmonic oscillator eigenvalue problem has an 
analytic solution, allowing more accurate results and better 
approximation for solutions [14]. We note that Johnson, 
Quigg and Rosner have studied and analyzed potentials 
with an adjustable number of power factors of ∑rα; they 
used a variable change to interpret the Sturmian equation 
and two intertwined spaces in the context of conventional 
physical Schrödinger equations [12]. We also mention that 
the electron-hole state with a based-on quantum harmonic 
oscillator behavior (principal harmonic potential) can be 
tackled using algebraic methods, such as the normal ordering 
method. In the following paragraphs, our examination begins 
with the Schrödinger equation that applies to space with 
2-dimensions based on the 3-dimensional Laplacian operator, 
i.e., we describe the LQS system in spherical coordinates and 
then calculate equations for θ = 0. 

3. Exciton in the distortion Coulombic potential

In this study, theoretically and approximately, the exciton 
in the LQS solution and eigenvalues answered by the N = 
3 dimensional Schrödinger equation in two intertwined 
spaces based on normal ordering has been described. In 
the following, we have predicted the mass spectrum in the 
quantum and thermal conditions using the mechanism of 
intertwined spaces using the normal ordering method (when 
all raising operators are to the left of all lowering operators). 
Our start point is the time-independent Schrödinger equation 
in 3-dimensional space, which describes the interaction of 
electron holes with the rest masses me, mh in the potential 
V(r,θ,φ), that lead us to create the stable bound state and 
describe properties of the distortion effect based on exciton 
bound states in LQS. The Schrödinger equation function 
ĤΨ(r,θ,φ) = EnlΨ(r,θ,φ) within potential Eq. (1), and external 
electric field Vext = |q|(E∙r) [14,15] reads as:

						            (5)

						             (6)
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						             (7)

where ℓ is the angular momentum quantum number, n is the 

principal quantum number, and                     is the reduced 

mass of the exciton bound state. Using Eq. (6), based on 

the Laplacian operator effect                                     , on

functions ℜ(r) and ℜ(r) ≡ rα χ(r) in 3-dimensional space, 
one can describe ℜ(r) using χ(r) as a radial weight function 
(RWF). The RWF is a fundamental concept in quantum 
mechanics that characterizes the probability density of 
locating a particle (electron) at a specific distance from 
another particle (hole) in the bound state (exciton) or electron-
nuclei in an atom or molecule's nucleus. RWF is computed as 
the product of the square of the radial wave function and the 
square of the radial coordinate and is dependent solely on the 
radial distance from the constituent particles. This function is 
essential in determining various properties of bound states in 
this research. Hence, ∆ℜ(r) ≡ ∆(rα χ(r)), and we present Eq. 
(5) as follows:

						              (8)

where ℜ(r) = rα χ(r), L is a parameter representing a new 
auxiliary space, i.e., we define the radial Schrödinger equation 
linked to the 3-dimensional space L = ℓ. As we introduced in 
Eq. (4), by changing  r = q2ρ, ℜ(r) → ℜ(q2ρ), this means that  
we can always maps r = 0 into q = 0 and maps r = ∞ into
q = ∞. Two intertwined spaces are transformed by relations:

Hence, the radial Laplacian in a 3-dimensional Riemannian 
space is:

and then by using ∆ℜ(r) = ∆(rα χ(r)) one can define:

						              (9)
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						            (10)

and then

						            (11)

We generalize this equation within intertwined spaces and 

determine		    and 
		        
						            (12)

and then one can determine the radial Schrodinger equation 
in the axillary D-dimensional space (D = 2LD 

_ 4ℓρ + 3) as 
follows:

						            (13)

where ρ > 0 and N = 4ℓρ + D. Eq. (14) relies on only the 
parameters D, ρ, and ℓ, which are combined through the 
parameter LD. Therefore, it is unnecessary to consider D 
and ℓ separately, and the number of dimensions is relatively 
arbitrary. Moving forward, we will treat LD = 2ℓρ + ρ _ 0.5 as 
a continuous parameter, not restricted to the integral or half-
integral values.

4. Exciton mass spectrum in quantum disk

The Radial Schrödinger Eq. (13) in N = 3 dimensional 
axillary space of an electron-hole bound state (exciton) within 
the distortion-Coulombic potential [16,17] and the external 
electric field (using the two intertwined space transformation 
described above) takes the form:

						            (14)

As we know, the exciton-bound state wave function 
becomes an oscillator one. Now, we will analytically 
calculate the mass spectrum and energy eigenvalue of Eq. 
(13) using the quantum oscillating properties condition of the 
bound state with the Hamiltonian H = H0 + HI, where H0 is 
the Hamiltonian of free oscillators and HI is the Hamiltonian 
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of the system). The bound state of the quantum oscillating 
system can be presented by the normal ordering method in 
the symplectic space. It is formulating the canonical variables 
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                                          operators in the N-dimensional 

space, i.e.,                                                                  , where 

N = 4ℓρ + D, and ω is the quantum oscillator frequency [14].

Substituting the canonical variables               into Eq. (13) 

and ordering by the creation and annihilation operators, the 
interaction Hamiltonian is obtained as follows:

						            (15)

The normal ordering method in the symplectic space 
requires that the HI does not contain the quadratic form 
of the normal ordering of operators        , these terms are 
included in the H0 (i.e., the distortion potential term in the 
symplectic space has to be included  in the Hamiltonian of 
free oscillators). Based on this condition, one can determine 

ω by the relation                                                      . 

The normal product over the canonical operators reads

and then Eq. (14) reads
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representation that considers the primary quantum effects 
on the s ground state of bound particles. For this work, we 
can simply suppose the spherical coordinate Θ ≈ 0 and the 
external electric field E ≈ 0 because we are trying to find 
two intertwined spaces transformation using the normal 
ordering method in the symplectic space, hence, we use 
simplified relations. Now using a series of mathematical 
transformations and applying the main quantum oscillating 
particles condition, i.e., the bound state exists at the minimum 
of oscillator frequency and energy eigenvalue. Therefore, 

                    and                     . Using the first equation, we 

define parameter ρ as follows:

						            (17)

and using                          , we determine the quantum oscillator 

frequency (ω) of the bound state as outlined below:

						            (18)

and then

						             (19)

The energy eigenvalue is defined by integrating the two 
equations ε0(Enℓ) = 0 and                   , so the energy eigen-

value reads

						            (20)

The thermodynamic properties of quantum and thermal 
LQS systems can be described and calculated via the partition 
function [15]. The partition function for n, ℓ states of the 

quantum oscillator system is                                                           ,  

where T is the temperature kb = 8.617×10-5 (eVK-1) is the 
Boltzmann thermodynamic constant, and β = 1/(kbT). We 
substitute the energy eigenvalue of LQS systems into the 
partition function relation and define:
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Hence, one can determine the mean energy value

                                    , and the temperature-dependent 

potential energy can be written as:

						            (22)

where Enℓ is the energy level of the exciton, and EF is the 
Fermi energy of the system.

We used the theoretical parameters appropriate to the 
semiconductor type of GaAs/AlGaAs for calculating 
quantum and thermal properties. The effective mass of an 
electron and a light hole is me

*  = 0.067me and mh
*  = 0.090me, 

and me = 0.5 MeV is the free electron mass. εr =12.53ε0 and ε0 
= 8.85×10-12 F.m-1 is the vacuum permittivity. The effective 
mass of an electron depends on temperature and is defined by                                                                                                                         

					     .
                                                                       
Using the spherical-polar coordinate shown in Fig. 1, Fig. 

2 presents the distortion potential for a fixed quantum disk 
with a radius of 50 nm, with some representative values βd  = 
0, 0.1, 0.5, 0.7, 1,  η = 0, and temperature T = 100 - 900 K.

The variation of quantum disc radius is given as zero, and 
the zero-pressure quantum disk radius is constant. As we 
know, the dependent azimuthal distortion parameters (φ) 
can affect the physical parameters of exciton-bound states 
in LQS [18]. This can influence the shape and symmetry of 
the confinement potential that binds electron-hole carriers 
in LQS and, consequently, the energy levels and binding 
energies of the binding states. The dependent azimuthal 
distortion parameters (φ) can induce distortion of the 
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Fig. 2. The ground state energy E10 of the exciton for values βd = 0, 
0.1, 0.5, 0.7, 1,  η = 0
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confinement potential along certain directions, which can 
lead to energy level anisotropy and binding state energies. 
Theoretical calculation of bound state energy eigenvalue and 
binding energies can also provide information on the effects 
of distortion, such as photoluminescence spectroscopy . It can 
be used to measure the emission spectra of bonded states in 
LQS, providing information about energy levels and binding 
energies. By analyzing the emission spectra under different 
orientations, we can study the effect of distortion on energy 
levels. In general, the effect of distortion on the energy levels 
of bonding states in  LQS depends on the specific properties 
of the system, such as the structure and the nature of the 
bonding states, and distortion can be an important factor to 
consider when designing and optimizing LQS devices based 
on exciton bound state properties in quantum disks [17,18].

The distortion effect is presented in Fig. 3. As we can see, the 
dependent azimuthal distortion parameters (φ) at (80°, 300°, 
and 190°) have extremely lower values than other degrees. 
Results of the quantum and thermal LQS characteristics 
were computed using MATLAB R2021a software and are 
presented in Figs. 2 and 3.

5. Conclusion

This article presents a theoretical approach for determining 
the energy levels of exciton in the GaAs/AlGaAs quantum disk 
with a distorted shape, based on transforming N-dimentional 
coordinate to the D-dimentional coordinate, depending on 
ρ and ℓ and the external distortion field. The focus was on 
the generation principles of the ground states and energy 
levels of the electron-hole bound states in quantum disks. 
The main cases discussed include the creation of excitons 
and the distortion effect on eigenenergy and potential energy 
values when changing the dependent azimuthal distortion 
parameter. The energy spectrum was determined and 

Fig. 3. The potential energy U0 of exciton in the ground state 
against the dependent azimuthal distortion parameters (φ) at finite 
temperature T = 500 K.
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calculated for different strengths of the distortion and the 
dependent distortion potential at finite temperature for a fixed 
quantum disk with a radius of 50 nm, disk of constant size, 
taking into account the angular position of the distortion
η = 0, the strength of the distortion βd, the azimuthal distortion 
potential φ, and external static electric (E ≈ 0) field in the 
consideration of non-central potential, which allows for the 
possibility of transition rules. The study found that distortion 
of the quantum disk will be minimal at the angles φ: 80°, 
300°, and 190°. The presence of the distortion effect on the 
exciton bound state leads to extreme changes in eigenenergy 
value, which may prove useful in certain optoelectronic 
device design applications.

Overall, the study highlights the importance of considering 
non-central potential and azimuthal distortion when studying 
the quantum, thermal, and optical properties of excitons 
in LQS and quantum disks and provides valuable insights 
into the behavior of these systems under external fields of 
varying strengths. In a distorted quantum disk, the thermal 
conductivity may be affected by various factors, such as the 
size and shape of the disk, the strength and nature of the 
distortion, and the temperature. The thermal conductivity of 
a distorted quantum disk is an important property that can 
affect its thermal behavior, such as how it dissipates heat 
or how it responds to environmental changes. The thermal 
conductivity of a distorted quantum disk can be affected by 
quantum interactions such as the quanta of lattice vibrations 
and create a scattering potential for phonons, which can lead 
to a reduction in the thermal conductivity in LQS. It can also 
be affected by the presence of impurities or defects in LQS, 
which can lead to additional scattering that can further reduce 
the thermal conductivity. Thermal conductivity is important 
in distorted quantum disks, and we should focus on these 
topics in future research.
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