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There have been substantial theoretical advances in the field of condensed matter 
physics in recent years. These significant developments have spanned many different 
principles. For example, accelerated research into understanding how quantum field 
theory is connected to physics has attracted a lot of attention from other domains. 
In particular, exciton and magnetoexciton coupled systems are popular due to their 
compatibility with experimental research. This study investigated and presented a 
theoretical description of electron-hole–photon interactions and excitonization in a 
microcavity nano-quantum environment based on QED, QFT, and quanto-relativistic 
behavior of the electron-hole coupled system. This work represents conversion, 
a main theoretical and applied physics subject, including electronic technologies, 
electro-photo catalysts, super batteries capacitors, qubits, quantum computation, and 
magneto-excitonic solar cells. The quanto-relativistic mass and the coupled electron-
hole systems were investigated using the Rytova-Keldysh and Coulomb potential in 
a free exciton system. The ground and excited coupled state energy and mass of free 
exciton as an atomic system in the oscillator explanation of a symplectic group were 
determined. This projective method is in line with other theoretical methods and could 
be useful to study and predicate several different multi-excitons exotic systems and 
determine the angular velocity of exotic coupled states and relativistic mass of particles, 
which is important in mono elemental or non-mono elemental nanolayers materials.
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1. Introduction and methodology

In this study, we describe mono elemental nanolayers 
(MEM), like Ge Fs (Germanene), Sn Fs (Stanene), and 
Si Fs (Silicene), Graphene-like structures, the masses 
of electrons and holes equal me

* = mh
*, and non-mono 

elementals (NMEM), like Ge Se, Ga As, In P, and MoS2. 
Fs refers to the freestanding monolayers (monolayers in 
a vacuum). As we know, elemental graphene-like 2D 
materials are called Xenes, where X refers to group-IV, 
group-V, or group-VI elements, which possess electronic 
properties different from those of the corresponding 
3D materials. These structures have the potential to 
open new nanoscale research frontiers in science and 
nanotechnology. This structure has different properties 
that make mono elemental nanolayers a possible 
candidate for the next generation of high technologies 
materials. Magnetoexciton is an electrically neutral 
exotic quasiparticle that exists in all mono elemental 
nanolayers. Magnetoexciton is bounded by a negatively 
charged electron and a positively charged hole that are 
attracted to each other by the electrostatic Coulomb 
interaction. The experimental discovery of exotic 
magnetoexcitons in nano-quantum layer levels has 
been expanded into the potential for the experimental 
existence of multi-exciton states, and considerable 
interest has been directed toward these multi-exciton 
state properties, especially the related state in direct and 
indirect orientation. 

Magnetoexcitons, as exciting oscillating quantum 
systems, are described by various potential models. The 
Rytova-Keldysh (RK) potential has been presented for 
direct magnetoexciton orientation and the Coulomb 
potential for indirect magnetoexciton orientation. 
In this paper, the RK potential was used to describe 
electrostatic interaction between particles and was 
expressed as Eq. (1).

            (1)

where Y0 and H0 are the zeroth order of Bessel and 
Struve functions, ε1 and ε2  are the material’s dielectric 
constants, ε is surrounded by an environment above and 
below with permittivity’s ε1 , ε2, r0  is the screening length 
proportional to the polarizability of mono elemental 
nanolayers r0 = 0.5 εl (ε1 + ε2)-1, l is the thickness of the 
layer, and D is the interlayers separated distance. This 

type of potential adequately describes the interaction 
and can be used in determining the potential of 
interaction between multi-particle electron-hole bound 
states in metal or nano-quantum layers. Using the RK 
potentials, one can determine the mass spectrum and 
eigenenergies of the magnetoexciton bound state. The 
mass is suggested based on the Gaussian behavior field 
parameters in the exotic coupled system [1,2,3]. Thus, 
the parameters for the ground states can be established 
using the RK potential in the procedure of a projective 
unitary representation of the symplectic group and the 
projective unitary representation (PUR) or oscillator 
explanation method [1].

The magnetoexciton coupled state is a hydrogen-
like atom, so nonrelativistic potential models can be 
used to study it. Our findings show that the component 
hole-electron masses differ from the other masses 
of the particles. The constituent mass of the hole is 
relatively greater than the electron, and the electron-
hole constituent masses in the quantum dot plates 
differ from the electron-hole of other structures. In 
this study, the ground-coupled states of electron-
hole were determined. While the radial Schrödinger 
equation (RSE) analytically and precisely predicts the 
probability of events or outcomes, it does not produce 
solutions, so several different numerical approximations 
and theoretical principles have been developed. The 
magnetoexciton system’s associated, operator creation, 
and annihilation principles were proposed to determine 
the rotational velocity of a coupled state as a function 
of the orbital quantum number, which consists of an 
electron and a hole. The rotational velocity is the main 
variable describing the interaction between coupled 
electron-holes that create bounding states like a proton-
electron, electron-positron, etc. With the help of QFT 
and QED theories, we find that the creation of a related 
state occurs if the gauge boson masses and the coupling 
constant of interaction are very small with regard to the 
constituent particulate masses.

In this article, we show how a modified Hamiltonian 
(Schrödinger equation) based on the PUR and using 
the angular velocity of coupled state can be used to 
describe the characteristics (i.e., the mass spectrum, the 
constituent mass of an electron-hole, and eigenenergy) 
of the coupled state. The technique is characteristically 
used to determine and solve a relativistic or nonrelativistic 
Schrödinger equation and to calculate the eigenenergy 
or bounding energy of the coupled electron-hole system 
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for an RK potential. The main goal of this study is to use 
the nonrelativistic Schrödinger equation to investigate 
the relationship of the electron-hole eigenenergy with 
the rotational velocity of the coupled state. First, a 
theoretical description of the electron/hole effective mass 
based on relativistic characteristics of interaction or the 
quanto-relativistic behavior of exotic magnetoexciton 
bound state is presented. Then, using this method, we 
demonstrate the projective unitary representation of the 
symplectic group while calculating the energy levels 
and coupled mass of magnetoexcitons [3]. Since the 
characteristics of magnetoexcitons can be accurately 
described by PUR, it is important to develop the PUR in 
nano-quantum physics, as it describes the coupled-state 
features and specifications of quasi-atom states. Next, 
the RSE is performed for the RK potential, and the 
coupled state of electron-hole eigenvalue is calculated 
for the ground stats and excited states. Finally, the single 
magnetoexciton energy levels under the average gauge 
field are presented.

2. Quantum field theory framework

A variety of quasi-particles with relativistic 
characteristics can be found in condensed matter, 
semiconductor materials, thin-film, and mono elemental 
nanolayers. In particular, semiconductors can sustain 
bound electron-hole (e-h) pairs and exotic bound states 
(magnetoexcitons). Electron-holes in semiconductors 
and other specific materials behave like bound states or 
bosonic states and can be presented as a Bose-Einstein 
condensate at very low temperature (as  1  to  10K); 
they behave very differently at very high temperatures 
(200 to 370K). Magnetoexciton behavior, as a Bose-
Einstein condensate state, was described theoretically 
in 1962 [4-7]. The realization of magnetoexciton’s new 
characteristics in semiconductors and high-tech materials 
would open new opportunities in the manipulation of 
quantum properties because of the greater flexibility 
and well-developed technology of semiconductor and 
2D materials. In this article, the mass of the coupled-
state is defined by the infinite-asymptote action of 
the correlation function (CF) of the particle currents 
with specific characteristics like quantum numbers. 
Based on Green’s function, the CF is represented as a 
functional Feynman path integral (FFPI), which allows 
us to describe the infinite-asymptote action. Hence, 
we can average it over the external field. The resulting 

method in nonrelativistic quantum mechanics is very 
close to the FFPI. In this case, the interaction potential 
can be determined by the Feynman diagram, and the 
constituent mass of the particle in the coupled-state 
differs from the initial mass state. Thus, the constituent 
mass gives us relativistic corrections to the Hamiltonian 
of interaction.  The details of this approach are briefly 
discussed below.     

The magnetoexciton bound state is a quasi-exotic 
state explained by the confining potential within the 
coupling constants of interaction. The magnetoexciton 
bound state can be described and its specifications 
defined at a finite temperature [8,9] using the modified 
radial Schrödinger equation [8]. Therefore, in this 
present work, we considered a system consisting 
of the main state and the radial excited states of the 
magnetoexciton bound state. This method should be 
considered a good approximation to the more excited 
states. The bound state equations and mathematical 
descriptions in nonrelativistic quantum mechanics are 
similar to the Feynman functional path integral. Hence, 
the mass of coupled electron-hole can be determined by 
the polarization function (statistical correlation) Π(r) 
and Green’s function G(r) [1]. Since Green’s function 
is described in a functional integral form, the coupled 
electron-hole mass spectrum should be explained in 
relativistic quantum theory in the following relations 
[9,10]. 

M = _lim|r|→∞|r|lnΠ(r) = _lim|r|ln(‹G1(r)|G2(r)›)       (2)

             

where asymptotic of the function Π(r) for n-body 
system is:

             (3)

Then, the coupled state mass in the stationary state 
reads as:
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            (4)

where μ is the reduced mass defined by:

             (5)

and using the Taylor approximation, one can determine 
parameters μi (i=1,2)

 as follows [10]:

            (6)

and:

            (7)

with the binding energy Ebin calculated below:

             (8)

where μ is the reduced mass of the system, m1 and m2 
are the free particle mass (rest mass), μ1 and μ2 are the 
constituent masses of the particle in the bound state, 
and we consider that m1 and m2 in the magnetoexciton 
system equivalent to the effective masses me

* and mh
*.

3. Relativistic correction of Schrödinger equation

The magnetoexciton is a quasi-exotic state in both 
the hole and electron relativistically. Therefore, the 
magnetoexciton bound state at a finite temperature in 
the mono elemental nanolayers can be specified using 
the Schrödinger equation, which enabled us to describe 
and define magnetoexciton specifications. We can 
explain bound state interactions based on the modified 
Schrödinger equation with relativistic correction, 
according to the projective unitary representation (PUR) 
at finite temperature, using Eqs. (6)-(8) for two particles 
in a bounded state [10-12]. Therefore, we can also 
explain the relativistic effect on the bound states using 
explanations I and II as Eq. (9) (based on the saddle 
point method or the method of steepest [10]) according 
to the equations and ideas in the above paragraph.

            (9)

Then Schrödinger’s equation ĤΨ = εΨ can be 
presented in a modified form (the radial relativistic 
Schrödinger equation):

          (10)

where |p̂e
2|=|p̂e

2|=|p̂r
2|. This method is generally used to 

predict the structure of the bound states mass spectrum 
(M) and eigenenergy (ε); hence, the Hamiltonian of 
the magnetoexciton bound state with the potential 
interaction V(r) between the hole is given by [10].

          (11)

          (12)

where μe and μh are the constituent mass of components 
(electron and hole) in the bounding system, and μ is 
the reduced mass determined and presented in the 
above paragraph. By including spin orbit interactions, 
we can obtain the Hamiltonian and also determine 
the mass difference between the degenerate exotic 
magnetoexciton states. In mono elemental nanolayers, 
one can present the Hamiltonian of spin-spin and spin-
orbit terms by applying an electric or magnetic field 
in a specific direction, like z, which couples with the 
spin of the electron and hole in nanomaterials. The 
Hamiltonian of spin orbits interactions is determined 
by Eq. (13).

Ĥspin-orbit = ĤSS + ĤLS = α (E(r) × p̂r
2).       (13)

where p̂r
2 is the momentum operator, α is the constant 

of spin-orbit interactions, and  is the Pauli spin 
matrices. Spin-orbit coupling is the first-order portion 
of the relativistic effect in atoms or molecules. For 
simplicity, this refinement in the calculation has been 
ignored. In the relativistic-quantum field, the mass 
of the coupled particles is presented by the Gaussian 
shape of the correlated-current function and the exact 
orbital quantum numbers. In terms of Green’s function, 
the statistical correlation is expressed and defined as a 
functional integral, allowing the necessary Gaussian 
limit to be allocated. Then, the average value of the 
external gauge field was calculated.
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the effective mass of particles in the bound state under 
the magnetic field in the mono elemental 2D nano-
quantum materials, me = 0.511 MeV is the rest mass of 
electrons, and mh = 0 is the hole in the free state. Using 
Eqs. (6) to (8) and ignoring the spin-orbit interaction, 
using Eq. (9), we have:

           (16)

We can present and investigate the exciton Bohr 
radius in 2D-Xene nanomaterials and define the relation 
between the lattice constant and the exciton Bohr 
radius with a well-known Coulomb coupling constant 
in the framework of quantum mechanics [16]. First, 

the exciton Bohr radius formula reads                     , 

where m* is the nonrelativistic reduced mass of the 
exciton system. Then, the exciton Bohr radius with 

effective masses of the electron and hole can determine 

by                                            . Next, we can define the 

lattice constant and its relation to the atomic radii for 
each monoelemental material; then, using this formula, 
we can present the nanomaterial properties of the 
electron-hole characteristics. Now, one can present Eq. 
(9) under the Jacobian coordinate transformation of the 
electron-hole bound state in mono elemental nanolayers 
(see Fig. 1(b)). The Jacobi coordinates based on Fig. 
1(b) of the magnetoexciton system are:

           (17)

where r is the vector of relative motion and R is the 
vector of the center of mass. The total  Hamiltonians of 
the magnetoexciton ĤΨ = εΨ  is defined as:

           (18)

where 

We describe Eq. (11) based on the relative motion 
(specified, r) for the bound state of electron and hole 
with zero centers of mass momentum (specified, R), 

4. Magnetoexciton in 2D materials

The analytical solution for the Schrödinger equation 
was obtained for VRK (r,T) and VC (r,T) potentials at a finite 
temperature with the radius r (0 ≤ r < ∞), d-dimensional 
space, and angles (θ,φ). The Hamiltonian of an electron-
hole coupled system (see Fig. 1(a)) (electron-hole 
coupled but a suggested free magnetoexciton system) 
[13,14] with momentum p̂ and interaction potential 
reads as follows:

ĤtotalΨn = ε(μ)Ψn = ε(μ)R(r)ϒ(θ,φ)      (14)

Ĥtotal = Ĥ + Ĥspin          

The electron-hole bound system in the external 
uniform magnetic field within the interacting potential 
V(r) and the spin-orbit interaction at finite temperature 
can be described by vector A or B by the Hamiltonian:

          
          (15)

where V(reh) is the potential interaction and the vector 

potential                  of the system corresponding 

to the magnetic field B = (0, 0, B), which is presented 

perpendicular to the direction of the magnetoexciton 

                                              ,                                             are 
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Fig. 1. The relative motion of the direct and indirect electron-hole 
bound state in mono elemental 2D nano-quantum materials. Where l 
is the nanosheet thickness, ε1 and ε2 are the electrical permittivity of 
the medium above and below the mono elemental nanolayers, and ε 
is the electrical primitivity of part surrounding the interlayers.

𝑟𝑟��� =
𝑚𝑚�𝜀𝜀�
𝑚𝑚∗ 𝑛𝑛�𝑟𝑟� 

𝑟𝑟��� =
𝑚𝑚�∗𝑚𝑚�∗

𝑚𝑚�∗ +𝑚𝑚�∗
𝑚𝑚�𝜀𝜀�𝑛𝑛�𝑟𝑟� 

e

R

ε1
e

ε2ε

(a) (b)

re

rh

e-

h+

eh

h

h
l

r

𝑟𝑟� =  ��∗

� 
𝒓𝒓 + 𝑹𝑹 

𝑟𝑟� =  ��∗

� 
𝒓𝒓 + 𝑹𝑹   

𝑀𝑀 = 𝑚𝑚�∗ + 𝑚𝑚�∗

 𝐻𝐻  = − ℏ�
�� 𝛥𝛥�  −

ℏ�
��∗ 𝛥𝛥�  + ��

��∗ �𝑩𝑩 × 𝑹𝑹�� + �∗���
��� �𝑩𝑩 × 𝒓𝒓�� − �� 

�� �𝑩𝑩 × 𝒓𝒓� ∙ 𝛻𝛻�   

          − �� 

��∗ �𝑩𝑩 × 𝑹𝑹� ∙ 𝛻𝛻�  − ��� 

��∗ �𝑩𝑩 × 𝒓𝒓� ∙ 𝛻𝛻�  + ���
��∗ �𝑩𝑩 × 𝒓𝒓� ∙ �𝑩𝑩 × 𝒓𝒓� + 𝑉𝑉(𝒓𝒓)   

 

�
�� 

= � �
��∗� + �

��∗� �,         𝛾𝛾 = ��∗���∗

��∗���∗
 ,     𝜇𝜇∗ = ��∗���∗

��∗���∗
 ,          𝑀𝑀 = 𝑚𝑚�∗ + 𝑚𝑚�∗  . 



A. Jahanshir / Journal of Particle Science and Technology 7 (2) (2021) 59-7164

and also consider the wave function of the electron-
hole bound state in the magnetic field as shown by the 
modified wave function φ(r,R): 

          (19)

Based on the properties of mono elemental 2D nano-
quantum materials, the masses of electrons and holes 
are equal me

* = mh
* = m*, so we can rewrite Eq. (11) 

by affecting the wave function on the Hamiltonian 

Hφ (r,R) = ε(μ) R(r) ϕ(R) and using,                                 ,  

γ = 0. Then,  the relative Hamiltonian Hr in these 
variables can be defined as:

         (20)

and, the n dimensional Schrödinger equation for the 
radial function is:

         (21)

where                                                              and       is the

main orbital angular momentum operator. Then, 
separating the angular variable in Eq. (20) and defining 
the radial Laplacian operator in the 3-dimensional space 
and the ground state (𝓁 = 0), the Radial Schrodinger 
equation can be expressed as:

          (22)

Within the Rytova-Keldysh potential (which 
shows the direct magnetoexciton orientation), the 
screened Coulomb potential (which shows the indirect 
magnetoexciton orientation), and assuming that in all 
center of mass frames, PR = 0 (the momentum of the 
center of mass), we can obtain the state of the interaction 
and define a good approximation of the effect of 
temperature easier than solving the entire RSE with 
full potential interaction. So, the radial Schrödinger Eq. 
(22) in n dimensional space, at the finite temperature, 
and ε1 = ε2 can be shown as:

          (23)

where 

and

Finally, the interlayer RK potential can be approximated 
by a harmonic type potential, as described in the next 
section.

5. Canonical variables transformation 

To determine the eigenenergy and mass spectrum 
of the RSE (1), we applied the PUR. This technique 
is based on the QFT. Quantized fields can present 
as an assembly of harmonic quantum oscillators for 
the vacuum state. Most potentials have a different 
form than eigenfunctions in QM (i.e., differ from the 
Gaussian form), so the variables in the original RSE 
must be changed. The modified RSE should have 
solutions with the quantum oscillator manner at large 
intervals and distances, and after the commutation and 
transformation, a new structure of quantum specifics and 
numbers is obtained. This commutation is not canonical; 
instead, the transformation of variables leading to the 
Gaussian infinite-asymptote action in the d -dimensional 
axillary space is based on the PUR. Therefore, to use 
the QFT, we need to change the variables in equation 
RSE by inserting a new variable in the d-dimensional 
axillary space. Now, according to the high momentum 
asymptotic form of Gaussian type (r → ∞ : r = q2ρ), Eq. 
(19) for R(r) relative motion is:

R(r) → R(r) = q2ρ𝓁 φ(q2)         (24)

and where ρ is a parameter to be determined, in the 
confining potential for an electron-hole system, this 
modification is performed using variational parameter 
ρ, and the magnetoexciton wave function becomes an 
oscillator one. The radial Laplacian operator in the 
d-dimensional axillary space, d = 4ρ𝓁 + 2ρ + 2 (𝓁 is the 
angular momentum quantum number), can be defined 
using the radial Laplacian operator in the n-dimensional 
space [10,15].
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⇒ 𝐻𝐻�� � 𝐻𝐻�����𝐸𝐸��:𝐻𝐻��:

Hence, the wave function should have a Gaussian 
type solution for large distances, and we apply the PUR 
[10] variables from Eq. (9) to the Hamiltonian Eq. (10). 
After variables are expressed and changed into axillary 
space, the Hamiltonian is determined by:

Ĥr → Ĥq = H0 + ε0(E) + :HIq:        (25)

where ε0(E) is the free oscillator Hamiltonian or the 
ground state vacuum energy, i.e., the minimum energy 
of the Hamiltonian. Now, based on PUR and the wick 
ordering method, we can define the creation (â†) and the 
annihilation (â) operator as follows:

[â,â†] = 1   ,   â |0⟩ = 0,

Then, the canonical variables in the quadratic models 
can be used to show increasing potential (ħ = c = 1)[10]:

where e2
x = ex - 1 - x - 0.5x2, and according to the PUR 

conditions, the interaction Hamiltonian contains all 
non-square parts of the term :*: (a condition in Wick 
ordering). Hence, one can determine the Hamiltonian 
with H0 = ω (â+â

_), the energy of the pure oscillator, 
:HIq:, and the interaction Hamiltonian and the minimum 
energy of the coupled state ε0(E). Afterward, variables 
are expressed and changing into axillary space with n = 1.

           (26)

Then, the energy of levels in the zeroth approximation 
of the PUR is obtained by minimizing the expectation 
value of Hamiltonian as follows:

ε0(E) = min ʃ Ψ0
* Ĥ Ψ0 dq = 0       (27)

we can define the Schrödinger equation as follows: 

           (28)

and the free oscillator Hamiltonian as:

           (29)

          (30)

In Eq. (30) one can define ρ using conditions 

                  for the Coulomb type potential ρ ≅ 1. 

Using conditions ε0(E) = 0 and               from Eq. 

(30), one can define the pure angular velocity ω and 
the energy of the ground-coupled state in the oscillator 
explanation model [15]. 

6. The exciton bound state within the PUR method

6.1. The Rytova-Keldysh potential 

In this study, we described the bound state of 
magnetoexciton within the Rytova-Keldysh potential 
when r >> r0. In this case, RK potential diverges 
logarithmically at the origin and goes to the logarithmical 
dependence. Then, the interlayer RK potential can be 
approximated by a harmonic type potential as follows:

VRK(r,T)r >> r0
 → V(r,T) = σ r2- V0        (31)

where:
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2.5Ψ(5ρ) – 1.5Ψ(3ρ) + 0.5Ψ(2ρ)- ρ-1 = 0            (37)

Using the above equations, we have calculated and 
defined ρ = 0.4913.

6.3. Exciton bound state within the RK potential

We consider the exciton bound state from Eq. (31) in 
the RK potential as: 

           (38)

with orbital excited levels 𝓁 ≠ 0 without the magnetic 
field effect B = 0 and V0 ≈ 0. The mass of the electron-
hole bound state in the lowest oscillator frequency with 
a determination of the PUR method is presented. The 
eigenenergy of the relative Hamiltonian of the bound 
state [17,18] is:

    
           (39)

According to conditions                 and ε0(E) = 0, one 

can define the eigenenergy with the oscillator frequency 
relation:

           (40)

where 𝓁 is the principal quantum number and parameter  

ρ ≅ 0.5 is determined by the equation           , and 

the binding energy of the hydrogen-like model is 

determined as                            . Hence, based on Eq. 

(41), one can determine that the masses of electrons 
and holes are equal me

* = mh
*, μ = me

*/2 in the binding 
energy of exciton in ground and excited states in mono 
elemental 2D nano-quantum materials, as follows:

           (41)

6.4. Exciton within the Coulomb potential

In this study, we presented the eigenenergy [16] of 

and we know that at large distances, r << r0, the RK 
potential becomes the Coulomb type potential:

           (32)

Previous studies have proposed that the charged 
component electron and hole of magnetoexciton bound 
state in monolayer or multilayer materials at finite 
temperature can be utilized to determine new properties 
and characteristics of the bound state eigenenergy and 
mass spectrum, providing a plausible approximation to 
describe the features of 2D material systems [15,17].

6.2. Magnetoexciton bound state within the RK potential

The ground state eigenenergy (𝓁 = 0) of a magneto-
exciton bound state in monolayer or multilayer 2D 
materials in a confining RK potential is presented in a 
theoretical framework based on quantum field theory. 
We start from Eq. (31) in r >> r0,  and then add Eq. (32) 
in r << r0. Next, using Eqs. (23) and (26) and assuming 

V0 ≈ 0 and                               , we have:

           (33)

Based on the projective unitary representation, the 
Hamiltonian of magnetoexciton bound state (ħ = c = 1) 
for the principal quantum number 𝓁 = 0 is defined as:

           (34)

where:

           (35)

and we can express the magnetoexciton eigenenergy as:

           (36)

Hence, one can define parameter ρ based on                  
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an exciton state in mono elemental 2D nano-quantum 
materials within the Coulomb potential , and for indirect 
electron-hole bound, we set the relative coordinate 
√(r2 + D2). In the center of mass, we changed the variable 
to the cylindrical coordinate system r = r (ζ , θ , z). r 
= const. We considered that the Coulomb electrostatic 
potential in the cylindrical coordinate would depend on 
ζ and z, and not on θ due to axial symmetry. We changed 
the variables ζ = q2ρ , R (ζ , θ , z) → ℜ (q2ρ), ρ = 1, z = D 
= const.  for Coulomb type potentials and obtained the 
Hamiltonian of electron-hole interaction in the mono 
elemental 2D nano-quantum materials base on the 
PUR method. Therefore, the Schrödinger equation with

                                                                    can be expressed 

as:

           (42)

Our excitonic system of 2D materials becomes a 
bound state separated by distance r. Then, similar to the 

previous Eqs. (33)-(37) in the theoretical framework 

of PUR [10]                  , one can present Eq. (33) in 

the  non-magnetic field interaction (ħ = c = 1), B = 0, 
r << r0, and ρ ≅ 1, d = 1+ ρ + 2ρ|m|. In this paragraph, 
we consider the structure of nano-quantum materials 
within the Coulomb potential where z = D = 0 (i.e., 
the mono elemental 2D nano-quantum materials will 
serve as a nano-quantum dots parameter d) describes 
the dimension of the auxiliary space in the PUR method 
and one can determine as, and m = 0, ±1, ±2, ... is 
the magnetic quantum number. By going to the new 
auxiliary d = 2 + 2|m| dimension coordinate, we can 
present the modified Schrödinger equation as:

           (43)

with the magnetic quantum number |m|, which lets us 
define all bound state properties of an electron-hole, 
including the mass spectrum, eigenenergy, wave function, 
and spin-orbit interactions. Then, the ground state energy 
in the PUR method takes the form of Eq. (26).

           (44)

Under conditions ε0(E) = 0 ,       , and 

                    the parameter represents the boundary 

system's component mass in mono elemental nanolayers 
(the reduced mass of the system). The eigenenergy of 
the relative Hamiltonian is defined as:

           (45)

where                     ; hence, the eigenenergy of the 

electron-hole bound state is:

          (46)

Then, the binding energy of exciton in the mono 
elemental 2D nano-quantum materials is determined by:

           (47)

6.5. Exciton within QFT approaches

In this section, we describe how massless quasiparticles 
(holes) suddenly acquire mass in the relativistic limit of 
interactions. In QFT, the bound state of an electron-hole 
as an exciton system can be realized:

1- if M ≠ me + mh and M < ∞, then a bound state with 
a mass M arises. 

2- if M = me + mh, tthen the interaction is so weak 
that the bound state can not arise, and the scalar 
particle exists as two independent states. Therefore, the 
mass spectrum and energy of a free exciton in mono 
elemental or non-mono elemental nanolayers can be 
defined very accurately in the context of RQM and QFT. 
As the relativistic behaviors of an exciton, the electron-
hole bound states are very important in the field of 
nanomaterials and nano quantum dots within a strong 
Coulomb type interaction which can be expressed as 
V (r) = -αs r-1. So, the theoretical description is reduced 
to determine the relativistic modification and regulate 
the interaction based on QFT theories. This idea defines 
the relativistic corrections using Feynman path integral, 
i.e., determines the interaction potential of the bound 
state and the relativistic behavior of mass. This idea 
is presented in more detail in section 2. To use the 
proposed formulas to describe the exciton bound state, 
eigenenergy, and mass spectrum based on QFT and 
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V (r) = αs r-1, we assumed the electron and hole mass 
interact solely within the strong Coulomb potential, i.e., 
we ignored the concept of effective mass and assumed 
the system was completely relativistic with a high 
energy interaction due to the large amount of photon 
energy. The radial relativistic Schrödinger Eq. (11) 
ĤR = εR  can be presented in the modified form Eqs.  (3), 
(4), (8) and (9) with                                    in the projective 
unitary method. This method is used to determine the 
bound states mass spectrum (M) and eigenenergy (ε). 
The relative Hamiltonian of the electron-hole bound 
state with a strong V (r)  potential presented in Eq. (10) 
is modified to express the relativistic corrections (using 
Feynman path integral) as follows:

          (48)

           (49)

where μe  and μh are the constituent mass of components 
(electron and hole) in the bounding system and μ is 
the reduced mass of electron-hole bound state that 
is determined and presented in section 2. Next, we 
determined the eigenenergy and mass spectrum of 

the electron-hole bound state. From Eq. (11) and                       

                             , ρ = 1, d = 4 + 4𝓁  one can define 

the eigenenergy of the ground using ε0(E) = 0 and                 

                    as follows:

           (50)

where                                               and  the oscillator 

frequency relation is:

Then, the mass spectrum of an exciton is determined 
using Eq. (2):

M = (me
2 + μ2β)1/2 + (μ2β)1/2 - βμ        (51)

where the constituent mass of components is defined as

μe = (me
2 + μ2β)1/2 ,    μh = (μ2β)1/2 .       (52)

Hence, one can easily determine the parameter 

                   by solving the Eq. (53).

(A2-β2) μ4 + (2AB-4βme
2) μ2 + B2 = 0      (53)

with A = β2 - 2β and B = me
2β - me

2.
The parameter μ and μ* are completely different and 

distinct concepts. Next, we determine the parameters 
of the exciton, composed of an electron and hole under 
the strong Coulomb interaction in mono elemental 
nanolayers. The following limits on the cluster’s rest 
mass are currently established as me

 = 051099895 
MeV, mh = 0, with a weak and strong Coulomb constant 
interaction range of 0.007 ≤ αs ≤ 0.21, in the ground 
and excited states and without spins-orbital interactions. 
The relative mass spectrum results of the electron mass

                                           of exciton are presented in 

Fig. 2.
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Fig. 2. The theoretical value of free exciton bound state in Silicene 
(mono-elemental Si Fs) with relativistic correction (a) and without 
(b), for the ground (𝓁 = 0) and excited states (𝓁 = 1).
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The different properties and characteristics of bound 
states in mono elemental 2D Xenes nanolayer materials 
have been previously determined and defined [19,20]. 
The theoretical calculation with the average coupling 

‹αs› = 0.1166 relation of relativistic to non-relativistic 

mass coefficient            for the ground state 𝓁 = 0  

and excited state 𝓁 = 1 were determined as 1.44932 and 
1.44928, respectively. The benefit of this correction and 
interacting effects of the electron-hole based on QFT 
can be shown theoretically by the relativistic effect 
of the coupling (which mixes states with different 
multiplicities, e.g., singlet-triplet spin transition, photon, 
polariton, etc.), correlations, and effects. Studies on 
electron-hole bound state interactions have intensified 
with the construction and formation of quantum systems 
confined in spatial dimensions known as artificial-
exotic atoms, super atoms, and magnetoexciton in the 
presence of a magnetic field. Due to their physical 
properties, there has been a great deal of recent interest 
and research in these exotic systems for use in quantum 
technologies, quantum computers, solar cells, quantum 
dot lasers, electrically tunable spin qubits, electrical 
manipulation of individual spins, and transistors, etc. 
[23-25]. "In 1994, Wagner et al. predicted a transition 
for the ground state energy from the spin-singlet to the 
spin-triplet state as a function of the magnetic field [26, 
pp. 1953]". Since then, the numerical diagonalization of 
the Hamiltonian matrix, variational approach, Hartree-
Fock method, and other methods and techniques have 
been used to determine and calculate the energy levels 
of nano quantum materials.

In this study, the PUR method was presented to 
determine the eigenenergy levels of MEM based 
on describing the relationship between relativistic 
corrections to the effective mass of particles. 
According to the results, we can define and determine 
spin eigenenergy by determining the weak or strong 
electron-hole interaction in MEM. The benefit of 
these corrections and correlation effects of interacting 
electrons confined in a MEM can be shown in theoretical 
and experimental ways. Due to the MF effect on spin 
transitions and adaptation, we conclude that the quantum 
environment of MEM has good potential to be a new 
candidate for future quantum processors and quantum 
technologies. Hence, one of the major advantages of 
the use of the relativistic correction to the mass in the 
total Hamiltonian is the possibility to determine and 

consistently yield more accurate results of the transition 
characteristic in MEM. Since we do not investigate the 
effects of spin interactions in this article, it is worth 
mentioning how the relativistic correction of mass can 
affect the results of the total eigenenergy of a MEM 
[26]. Nano-quantum materials show potential as new 
candidates for future quantum processors and quantum 
technologies because of the magnetic field effect on the 
bound state, spin transitions, and adaptation. Hence, 
one of the major advantages of the use of the relativistic 
correction to the mass in the total Hamiltonian is the 
possibility to determine and consistently yield more 
accurate results of the properties and characteristics in 
high-tech materials.

7. Conclusion

A new approach for predicting the mass spectrum of 
extraordinary electron-hole coupled states in mono and 
non-mono elemental nanolayers, based totally on the 
relativistic-quantum model and the quanto-relativistic 
behavior of the electron-hole coupled system within 
a strong electromagnetic and RK potential has been 
presented and investigated. The most important 
problem of technology and investigations in mono 
elemental nanolayers is the generation principles of 
the ground states and energy levels of the electron-hole 
bound states. In summary, the following situation can 
be realized:

i) If δ ≤ M < ∞ and M ≠ m1 + m2, 0 > μi ≥ ϑ, then 
a magnetoexciton with a mass M arises. δ and ϑ are 
dimensionless parameters that can be described by the 
coupling constant value and the mass of the electron 
(hole) in the binding system at the zero velocity, where 
M is the mass of coupled electron-hole and μi is the 
constituent mass of the electron (hole).  

ii) If M = m1 + m2, then the interaction is so weak 
that the electron-hole coupled state cannot arise and the 
electron and hole exist as different free particles with 
definite energy in mono elemental nanolayers. 

Based on these situations, we successfully defined 
the eigenenergy, the constituent mass, the free angular 
velocity, and the reduced mass of magnetoexciton in 
the mono elemental nanolayers. The relativistic to 
non-relativistic mass coefficients were theoretically 
determined as 1.44932 for the ground state and 
1.44928 for the first excited state. Relativistic quantum 
mechanics offers a unique opportunity to investigate 

〈𝜎𝜎����ℓ𝜎𝜎ℓ
〉 
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the dynamics of magnetoexciton-related systems. 
The features of exotic atoms based on the relativistic 
behavior of the interaction are excellent tools to extract 
useful information on magnetoexcitons in the mono 
elemental nanolayers. Our understanding of relativistic 
quantum mechanics and QFT provides a good method 
for investigating quasi-atoms containing a hole and an 
electron. Most of the studied exotic linked systems are 
made up of a hole coupled to an electron because the 
attracting force of the clusters (the hole and the electron) 
creates related states, becoming more stable systems. 
Systematic studies of magnetoexciton energy levels 
have extracted considerable detail on magnetoexciton 
interactions. In this theoretical work, the eigenenergy 
of magnetoexciton in mono elemental nanolayers was 
determined based on relativistic corrections to the 
particles of the hole and the electron. Moreover, we 
defined that the constituent masses of the hole and the 
electron are different from the hole and electron in a 
resting state and close to the effective masses. Both mass 
spectrum and constituent masses were theoretically 
defined and presented. Also, the eigenenergy of 
electron-hole coupled in the mono elemental nanolayers 
was estimated with the Coulomb potential within 
the magnetic field, based on the projective unitary 
representation of the symplectic group, QFT ideas, 
and the normal order method. We defined the free 
angular velocity value of creating a coupling state and 
defined the mass of the bonding electron-hole system 
in mono elemental nanolayers with the minimum value 
in the relativistic limit. We denoted that the constituent 
masses are different from the effective masses of an 
electron and a hole. This computational achievement 
can be very useful in future research on monolayers, 
bilayers, and mono elemental nanolayers. Since results 
from new experiments on mono elemental nanolayers 
continue to be obtained, future in-depth investigation 
and determination of magnetoexciton characteristics 
are needed. We aim to investigate this type of prediction 
on magnetoexciton-polariton and multi-exciton systems 
trapped in mono and non-mono elemental nanolayers in 
future works.
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