Green preparation of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones using γ-Fe2O3@KSF as novel and recyclable magnetic catalyst

Document Type: Research Paper

Authors

Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

10.22104/jpst.2020.3307.1139

Abstract

The preparation of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones via a γ-Fe2O3@KSF-catalyzed multicomponent coupling reaction of 2-aminobenzimidazole, benzaldehydes, and dimedone in solvent-free conditions is reported. γ-Fe2O3@KSF as a magnetic catalyst was prepared using the successive coating of a γ-Fe2O3 shell on a KSF core and was characterized by different methods including FT-IR, XRD, TGA and SEM techniques. The merits of this method include limited use of organic solvents, excellent purity of products, and an easy workup technique. The tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones were prepared in yields of 88-94%. The catalyst was recovered through an external magnet and reused four times without any considerable loss of its activity.

Graphical Abstract

Green preparation of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones using γ-Fe2O3@KSF as novel and recyclable magnetic catalyst

Highlights

  • The preparation of quinazolins by γ-Fe2O3@KSF-catalyzed reactions of 2-aminobenzimidazole, benzaldehydes and dimedone is reported.
  • The catalyst was prepared using the successive coating of γ-Fe2O3 shell on KSF core.
  • Using γ-Fe2O3@KSF offers advantages, including easy workup, high yields, reusability, no by-products and efficient product separation.

Keywords


[1] J. Azizian, A.S. Delbari, K. Yadollahzadeh, One-pot, three-component synthesis of pyrimido[4,5-b]quinoline-tetraone derivatives in water, Synthetic Commun. 44 (2014) 3277-3286.
[2] S. Fatma, D. Singh, P. Ankit, P. Mishra, M. Singh, J. Singh, An eco-compatible multicomponent strategy for the synthesis of new 2-amino-6-(1H-indol-3-yl)-4-arylpyridine-3,5-dicarbonitriles in aqueous micellar medium promoted by thiamine-hydrochloride, Tetrahedron Lett. 55 (2014) 2201-2207.
[3] F.K. Behbahani, S.J. Maryam, On water CuSO4. 5H2O-catalyzed synthesis of 2-amino-4H-chromenes, Korean Chem. Soc. 57 (2013) 357-360.
[4] R. Ghorbani-Vaghei, Z. Toghraei-Semiromi, R. Karimi-Nami, One-Pot synthesis of 4H-chromene and dihydropyrano[3,2-c]chromene derivatives in hydroalcoholic media, J. Braz. Chem. Soc. 22 (2011) 905-909.
[5] H. Kiyani, F. Ghorbani, Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates, J. Saudi Chem. Soc. 18 (2014) 689-701.
[6] R. Ranjbar-Karimi, S. Hashemi-Uderji, M. Mousavi, Select fluor promoted environmental-friendly synthesis of 2H-chromen-2-ones derivatives under various reaction conditions, J. Iran. Chem. Soc. 8 (2011) 193-197.
[7] J. Safari, Z. Zarnegar, M. Heydarian, Practical, ecofriendly, and highly efficient synthesis of 2-amino-4H-chromenes using nanocrystalline MgO as a reusable heterogeneous catalyst in aqueous media, J. Taibah Univ. Sci. 7 (2013) 17-25.
[8] A. Solhy, A. Elmakssoudi, R. Tahir, M. Karkouri, M. Larzek, M. Bousminaa, M. Zahouily, Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7, Green Chem. 12 (2010) 2261-2267.
[9] A. Zonouzi, R. Mirzazadeh, M. Safavi, S.K. Ardestani, S. Emami, A. Foroumadi, 2-Amino-4-(nitroalkyl)-4H-chromene-3-carbonitriles as new cytotoxic Agents, Iran. J. Pharm. Res. 12 (2013) 679-685.
[10] V. Polshettiwar, R. Luque, A. Fihri, H.B. Zhu, M. Bouhrara, J. M. Bassett, Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075.
[11] R. Cano, D.J. Ramon, M. Yus, Impregnated palladium on magnetite, a new catalyst for the ligand-free cross-coupling Suzuki-Miyaura reaction, Tetrahedron, 67 (2011) 5432-5436.
[12] D.J. Widder, W.L. Greif, K.J. Widder, R.R. Edelman, T.J. Brady, Magnetite albumin microspheres: A new MR contrast material, Am. J. Roentgenol. 148 (1987) 399-404.
[13] A.R. Kiasat, S. Nazari, Magnetic nanoparticles grafted with β-cyclodextrin-polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water, J. Mol. Catal. A-Chem. 365 (2012) 80-86.
[14] Y. Xu, S. Huang, M. Xie, Y. Li, L. Jing, H. Xu, Q. Zhang, H. Li, Core-shell magnetic Ag/AgCl@Fe2O3 photocatalysts with enhanced photoactivity for eliminating bisphenol A and microbial contamination, New. J. Chem. 40 (2016) 3413-3422.
[15] R. Bouley, D. Ding, Z. Peng, M. Bastian, E. Lastochkin, W. Song, et al., Structure-activity relationship for the 4(3H)-quinazolinone anti-bacterials, J. Med. Chem. 59 (2016) 5011-5021.
[16] X.M. Peng, L.-P. Peng, S. Li, S.R. Avula, V.K. Kannekanti, S.-L. Zhang, et al., Quinazolinone azolyl ethanols: potential lead antimicrobial agents with dual action modes targeting methicillin-resistant Staphylococcus aureus DNA, Future Med. Chem. 8 (2016) 1927-1940.
[17] T.K. Khatab, K.A.M. El-Bayouki, W.M. Basyouni, F.A. El-Basyoni, S.Y. Abbas, E.A. Mostafa, Curcumin: therapeutic applications in systemic and oral health, Res. Pharm. Bio. Chem. Sci. 6 (2015) 281-290.
[18] L.B. Schenkel, P.R. Olivieri, A.A. Boezio, H.L. Deak, R. Emkey, R.F. Graceffa et al., Optimization of a novel quinazolinone-based series of transient receptor potential A1(TRPA1) antagonists demonstrating potent in vivo activity, J. Med. Chem. 59 (2016) 2794-2809.
[19] M.J.P. Infantas, M.D. Carrion, M. Chayah, L.C. Lopez-Cara, M.A. Gallo, D. Acuna-Castroviejo, M.E. Camacho, Synthesis of oxadiazoline and quinazolinone derivatives and their biological evaluation as nitric oxide synthase inhibitors, Med. Chem. Res. 25 (2016) 1260-1273.
[20] J. Zhang, J. Liu, Y. Ma, D. Ren, P. Cheng, J. Zhao, F. Zhang, Y. Yao, One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety, Bioorg. Med. Chem. Lett. 26 (2016) 2273-2277.
[21] S.B. Mhaske, N.P. Argade, The chemistry of recently isolated naturally occurring quinazolinone alkaloids, Tetrahedron, 62 (2006) 9787-9826.
[22] L. He, H. Li, J. Chen, X.F. Wu, Recent advances in 4(3H)-quinazolinone syntheses, RSC Adv. 4 (2014) 12065-12077.
[23] X.F. Wu, L. He, H. Neunmann, M. Beller, Palladium‐catalyzed carbonylative synthesis of quinazolinones from 2‐aminobenzamide and aryl bromides, Chem. Eur. J. 19 (2013) 12635-12638.
[24] S.Y. Abbas, K.A.M. El-Bayouki, W.M. Basyouni, Synthesis of O-Me ulongamide B and O-Me ulongamide C, natural modified cyclodepsipeptides, Synthetic Commun. 46 (2016) 993-1006.
[25] W. Xu, X.R. Zhu, P.C. Qian, X.G. Zhang, C.L. Deng, Copper-catalyzed tandem reaction of 2-aminobenzamides with tertiary amines for the synthesis of quinazolinone derivatives, Synlett. 27 (2016) 2851-2857.
[26] L. Wang, Y. Wang, M., Chen M.W. Ding, Reversible P(III)/P(V) redox: catalytic aza‐wittig reaction for the synthesis of 4(3H)‐quinazolinones and the natural product vasicinone, Adv. Synth. Catal. 356 (2014) 1098-1104.
[27] J. Wang, S. Zha, K. Chen, F. Zhang, C. Song, J. Zhu, Quinazoline synthesis via Rh(III)-catalyzed intermolecular C–H functionalization of benzimidates with dioxazolones, Org. Lett. 18 (2016) 2062-2065.
[28] I.K. Kostakis, A. Elomri, E. Seguin, M. Iannelli, T. Besson, Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide, Tetrahedron Lett. 48 (2007) 6609-6613.
[29] Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, A novel biomaterial-Fe3O4:TiO2 core-shell nanoparticle with magnetic performance and high visible light photocatalytic activity, Opt. Mater. 31 (2008) 380-384.
[30] Y. Zhang, X. Yu, Y. Jia, Z. Jin, J. Liu, X. Huang, A facile approach for the synthesis of Ag‐coated Fe3O4@TiO2 core/shell microspheres as highly efficient and recyclable photocatalysts , Eur. J. Inorg. Chem. 33 (2011) 5096-5104.
[31] N.O. Mahmoodi, M. Mohammadi Zeydi, E. Biazar, Ultrasound-promoted one-pot four-component synthesis of novel biologically active 3-aryl-2,4-dithioxo-1,3,5-triazepane-6,7-dione and their toxicity investigation, J. Sulfur Chem. 37 (2016) 613-621.
[32] M. Mohammadi Zeydi, S. Ahmadi, Mg(ClO4)2 as a recyclable catalyst for synthesis of 4H-chromenes, Orient. J. Chem. 32 (2016) 2215-2220.
[33] N.O. Mahmoodi, M. Mohammadi Zeydi, E. Biazar, Z. Kazeminejad, Synthesis of novel thiazolidine-4-one derivatives and their anticancer activity, Phosphorus Sulfur, 192 (2016) 344-350.
[34] M. Mohammadi Zeydi, N.O. Mahmoodi, Nano TiO2@KSF as a high-efficient catalyst for solvent-free synthesis of biscoumarin derivatives, Int. J. Nano. Dimens. 7 (2016) 174-180.
[35] M. Mohammadi Zeydi, N. Montazeri, M. Fouladi, Synthesis and evaluation of novel [1,2,4]triazolo[1,5‐c]quinazoline derivatives as antibacterial agents, J. Heterocyclic Chem. 54 (2017) 3549-3553.
[36] N.O. Mahmoodi, M. Mohammadi Zeydi, M. Mamaghani, N. Montazeri, Synthesis and antibacterial evaluation of several novel tripod pyrazoline with triazine core (TPTC) compounds, Res. Chem. Intermediat. 43 (2017) 2641-2651.
[37] N.O. Mahmoodi, Z. Khazaei, M. Mohammadi Zeydi, Preparation, characterization and use of sulfonylbis(1,4-phenylene)bis(sulfamic acid) as an eco-benign, efficient, reusable and heterogeneous catalyst for the synthesis of mono- and bis-chromenes, J. Iran. Chem. Soc. 14 (2017) 1889-1898.
[38] M. Mohammadi Zeydi, N.O. Mahmoodi, Overview on developed synthesis methods of triazepane heterocycle, J. Chin. Chem. Soc. 64 (2017) 1023-1034.
[39] M. Mohammadi Zeydi, N.O. Mahmoodi, M. Fouladi, M. Shamsi-Sani, Application of nano TiO2@KSF as an efficient and reusable catalyst for the synthesis of pyrano-pyrimidines, Iran. Chem. Commun. 6 (2018) 402-407.
[40] M.M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, H.A. Oskooie, F.F. Bamoharram, A three component one-pot procedure for the synthesis of [1,2,4]triazolo / benzimidazolo - quinazolinone derivatives in the presence of H6P2W18O62·18H2O as a green and reusable catalyst, Mol. Divers. 12 (2008) 181-185.
[41] A. Shaabani, E. Farhangi, A. Rahmati, Synthesis of tetrahydrobenzimidazo[1,2-b]quinazolin-1(2H)-one and tetrahydro-1,2,4-triazolo[5,1-b]quinazolin-8(4H)-one ring systems under solvent-free conditions, Comb. Chem. High. T. Scr. 9 (2006) 771-776.
[42] E. Mourad, A.A. Aly, H.H. Farag, E.A. Beshr, Microwave assisted synthesis of triazoloquinazolinones and benzimidazoquinazolinones, Beilstein J. Org. Chem. 3 (2007) 1-5.
[43] M.R. Mousavi, M.T. Maghsoodlou, Catalytic systems containing p-toluenesulfonic acid monohydrate catalyzed the synthesis of triazoloquinazolinone and benzimidazoquinazolinone derivatives, Monatsh. Chem. 145 (2014) 1967-1973.
[44] G. Krishnamurthy, K.V. Jagannath, Microwave-assisted silica-promoted solvent-free synthesis of triazoloquinazolinone and benzimidazoquinazolinones, J. Chem. Sci. 125 (2013) 807-811.
[45] R.G. Puligundla, S. Karnakanti, R. Bantu, N. Kommu, S.B. Kondra, L. Nagarapu, A simple, convenient one-pot synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives by using molecular iodine, Tetrahedron Lett. 54 (2013) 2480-2483.
[46] G.M. Ziarani, A. Badie, Z. Aslani, N. Lashgari, Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones, Arab. J. Chem. 8 (2015) 54-61.
[47] M.M. Heravi, F. Derikvand, L. Ranjbar, Sulfamic acid-catalyzed, three-component, one-pot synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives, Synthetic Commun. 40 (2010) 677-685.