The effects of suspending medium on dielectrophoretic systems for separating and sorting carbon nanotubes

Document Type: Research Paper


1 Department of Chemical Engineering, Faculty of Engineering, University of Sistan & Baluchestan, Zahedan, Iran

2 Innovation Center for Membrane Technology (ICMT), University of Sistan & Baluchestan, Zahedan, Iran

3 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran


The separation of two different types of multi-walled carbon nanotubes is studied in a dielectrophoresis-based microchannel system in seven different solvents as the suspending medium.  A simple model was developed to predict the behavior of the multi-walled carbon nanotubes in the above mentioned system. Then, the equations of motion for the multi-walled carbon nanotubes in that system were introduced and the effect of the suspending medium type on the fabrication parameters of dielectrophoretic system, such as applied voltage and inter electrode gap, was surveyed. The calculations indicate that the suspending medium has a direct influence on the design and optimization of dielectrophoretic systems. The geometrical separation of the carbon nanotubes is considered here, and it was found that the model predicts some advantages in separation and sorting multi-walled carbon nanotubes based on their diameter. 

Graphical Abstract

The effects of suspending medium on dielectrophoretic systems for separating and sorting carbon nanotubes


  • The separation of CNTs was studied in a DEP system based on electrical properties.
  • The effect of seven solvents as suspending medium on the DEP system was investigated.
  • The suspending medium has a direct influence on the design and optimization of DEP systems.
  • Geometrical separation of CNTs based on their diameter is possible in the DEP system.


Main Subjects

[1] Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M.R. Amer, C. Zhou, Review of electronics based on single-walled carbon nanotubes, in Single-Walled Carbon Nanotubes: Springer, 2019, pp. 189-224.
[2] G. Rahman, Z. Najaf,A. Mehmood, S. Bilal, A.H. Ali Shah,S. Ahmad Mian, G. Ali, An overview of the recent progress in the synthesis and applications of carbon nanotubes, C-J. Carbon Res. 5, (2019) 3.
[3] S. Banerjee, T. Hemraj-Benny, S.S. Wong, Routes towards separating metallic and semiconducting nanotubes, J. Nanosci. Nanotechno. 5 (2005) 841-855.
[4] L. Kurzepa, A. Lekawa‐Raus, J. Patmore, K. Koziol, Replacing copper wires with carbon nanotube wires in electrical transformers, Adv. Funct. Mater. 24 (2014) 619-624.
[5] C. Rinaldi, An invariant general solution for the magnetic fields within and surrounding a small spherical particle in an imposed arbitrary magnetic field and the resulting magnetic force and couple, Chem. Eng. Commun. 197 (2009) 92-111.
[6] H. Zhang, L. An, Progress in dielectrophoretic assembly of carbon nanotubes for sensing application, in MATEC Web of Conferences, 67 (2016) 06071.
[7] Q. Zhao, Z. Wang, L. Tong, Z. Zheng, W. Hu, J. Zhang, Selective sorting of metallic/semiconducting single-walled carbon nanotube arrays by ‘igniter-assisted gas-phase etching’, Mater. Chem. Front. 2, (2018) 157-162.
[8] M. Zheng, Sorting carbon nanotubes, in Single-Walled Carbon Nanotubes: Springer, 2019, pp. 129-164.
[9] H.A. Pohl, Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields, Cambridge Monographs on Physics, Cambridge University Press, Cambridge, 1978.
[10] M.P. Hughes, Nanoelectromechanics in Engineering and Biology, CRC press, NY, 2002.
[11] R. Krupke, F. Hennrich, H.V. Löhneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes, Science, 301 (2003) 344-347.
[12] S. Ammu, D.R. Heskett, The role of electric field and ultrasonication in the deposition and alignment of sngle-walled carbon nanotube networks using dielectrophoresis, World J. Cond. Mat. Phys. 3 (2013) 159-163.

[13] M.V. Gorshkov, A.S. Moskalenko, M.V. Shcherbak, Alternating electric field effect on the alignment of carbon nanotubes during the dielectrophoresis process, in AIP Conference Proceedings, AIP Publishing, 1989 (2018) , p. 030008.
[14] J. Kang, S. Hong, Y. Kim, S. Baik, Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation, Langmuir, 25 (2009) 12471-12474.
[15] M.-W. Lee, Y.-H. Lin, G.-B. Lee, Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces, Microfluid. Nanofluid. 8(2010) 609-617.
[16] C. Wei, T.-Y. Wei, F.-C. Tai, The characteristics of multi-walled carbon nanotubes by a two-step separation scheme via dielectrophoresis, Diam. Relat. Mater. 19 (2010) 573-577.
[17] A. Abdulhameed, I. Abdul Halin, M.N. Mohtar, M.N. Hamidon, The role of medium on the assembly of carbon nanotube by dielectrophoresis, J. Disper. Sci. Technol. 41 (2020) 1576-1587.
[18] A.K. Naieni, A. Nojeh, Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis, Nanotechnology, 23 (2012) 495606.
[19] A.I. Oliva-Avilés, A. Alonzo-García, V.V. Zozulya, F. Gamboa, J. Cob, F. Avilés, A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields, Meccanica, 53 (2018) 2773-2791.
[20] M.H. Nayfeh, M.K. Brussel, Electricity and magnetism, Dover Publications, NY, 2015.
[21] H. Morgan, N. Green, AC electrokinetics: colloids and nanoparticles, Research Studies Press LTD, Hertfordshire, England, 2003.
[22] S.B. Asokan, L. Jawerth, R.L. Carroll, R. Cheney, S. Washburn, R. Superfine, Two-dimensional manipulation and orientation of Acti-Myosin systems with dielectrophoresis, Nano Lett. 3 (2003) 431-437.
[23] H. Morgan, N.G. Green, Dielectrophoretic manipulation of rod-shaped viral particles, J. Electrostat. 42 (1997) 279-293.
[24] C. Wei, T.-Y. Wei, C.-H. Liang, F.-C. Tai, The separation of different conducting multi-walled carbon nanotubes by AC dielectrophoresis, Diam. Relat. Mater. 18 (2009) 332-336.
[25] J.-E. Kim, C.-S. Han, Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis, Nanotechnology, 16 (2005) 2245-2250.

[26] H. Morgan, A.G. Izquierdo, D. Bakewell, N.G. Green, A. Ramos, The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series, J. Phys. D Appl. Phys. 34 (2001) 1553-1561.
[27] V.L. Streeter, E.B. Wylie, Fluid Mechanics; SI Metric Ed., McGraw-Hill, NY, 1983.
[28] W.G. Don, H.P. Robert, Perry's Chemical Engineers' Handbook, 8th ed., McGraw-Hill Education, NY, 2008.
[29] H.K. Hansjörg Bipp, Formamides, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2011.
[30] D.R. Lide, CRC Handbook of Chemistry and Physics, 84th ed., CRC press, NY, 2004.
[31] K. Holmberg, Surfactants, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2011, pp. 1-56.
[32] R. Schmidt, K. Griesbaum, A. Behr, D. Biedenkapp, H. Voges, D. Garbe, C. Paetz, G. Collin, D. Mayer, H. Höke, Hydrocarbons, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2014, pp. 1-74.
[33] H. Ertl, R. Ghai, F. Dullien, Liquid diffusion of nonelectrolytes: Part II, AIChE J. 20 (1974) 1-20.
[34] C. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. 1 (1955) 264-270.
[35] G. Chen, Y. Hou, H. Knapp, Diffusion coefficients, kinematic viscosities, and refractive indices for heptane+ ethylbenzene, sulfolane + 1-methylnaphthalene, water + N, N-dimethylformamide, water + methanol, water + N-formylmorpholine, and water + N-methylpyrrolidone, J. Chem. Eng. Data, 40 (1995) 1005-1010.

[36] H. Ertl, F. Dullien, Self‐diffusion and viscosity of some liquids as a function of temperature, AIChE J. 19 (1973) 1215-1223.
[37] M. Saghir, C. Jiang, S. Derawi, E.H. Stenby, M. Kawaji, Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures, Eur. Phys. J. E, 15 (2004) 241-247.
[38] R. Cicoria, Y. Sun, Dielectrophoretically trapping semiconductive carbon nanotube networks, Nanotechnology, 19 (2008) 485303.
[39] C. Zhang, K. Khoshmanesh, A. Mitchell, K. Kalantar-Zadeh, Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems, Anal. Bioanal. Chem. 396 (2010) 401-420.
[40] K. Khoshmanesh, C. Zhang, S. Nahavandi, S. Baratchi, A. Mitchell, K. Kalantar‐zadeh, Dielectrophoretically patterned carbon nanotubes to sort microparticles, Electrophoresis, 31 (2010) 3380-3390.
[41] K. Khoshmanesh, C. Zhang, S. Nahavandi, F.J. Tovar-Lopez, S. Baratchi, A. Mitchell, K. Kalantar-zadeh, Size based separation of microparticles using a dielectrophoretic activated system, J. Appl. Phys. 108 (2010) 034904.