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•	 Evaluation of the maximum 
spreading diameter of nanoparticle 
data on hydrophobic surface was 
studied.

•	 The generalized inverted 
exponential model was proposed 
as an appropriate model.

•	 The Markov Chain Monte Carlo 
procedure and likelihood approach 
were used to predict the censored 
data.
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A good nano coating depends on the quality of the collision and spreading behavior of the 
nanoparticles. Unfortunately, in many cases, nanoparticle spreading data has not been 
recorded. In this paper, we have extended the evaluation model to predict the unavailable 
or censored maximum spreading diameter of nanoparticle data. Different point and 
interval methods have been considered for this problem. Choosing Bayesian evaluation, 
the Markov Chain Monte Carlo (MCMC) has been proposed as an efficient procedure 
for estimating the predictive inference for future observation. An important implication 
of the present study is that the censored maximum diameter data can be predicted well 
using the proposed methods. Results showed the proposed point predictions are close to 
real data, the predictive intervals contain the real values, and it verifies the applicability 
of the prediction techniques for real problems.
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1. Introduction

Coating by nanoparticle spreading performs a critical 
role in numerous novel industrial processes such as 
plasma spray coating, nano self-assembling, nano 
safeguard coatings, and ink-jet printing. Currently, 
the observations on some experimental units, even 
in well-planned experiments on industrial processes, 
are sometimes not available. Missing and unavailable 
data in nano-coating research is a common problem. 
Maximum diameter of a nanoparticle, one of the most 
important parameters during particle spreading on a 
surface, may be unavailable at times. In the coating 
process, liquid particles spread on the surface until 
they reach a maximum diameter where the liquid 
surface tension and viscosity overcame inertial forces, 
after which droplet recoil off the surface. Although the 
maximum diameter is an important parameter, only 
a few studies on this topic are found in the literature. 
For example, Maroo and Chung simulated the impact 
of an argon nanodroplet on a homogeneous platinum 
wall using molecular dynamics [1]. They evaluated 
interface markers, interfacial fit, and contact angles and 
observed the Leidenfrost effect for a wall temperature 
of 300 K for both cases of surface wettability. Sedighi et 
al. analyzed the process of a single nanodroplet impact 
onto a surface with molecular dynamics simulation 
(MD) [2]. They observed that the dynamic contact 
angle, spreading diameter, and advancing and receding 
periods exhibit a strong dependence on droplet size. 
Asadi proposed a novel computational fluid dynamics 
and molecular kinetic theory (CFD-MK) method to 
simulate nanodroplet impact onto a solid surface [3]. 
He evaluated the spreading behavior for wettable, 
partially wettable, and non-wettable surfaces. Hai-Bao 
et al. studied the dynamic processes of a nanodroplet 
impacting on hydrophobic surfaces at a nano dimension 
level [4]. They simulated the dynamic process of 
nanodroplet impact on hydrophobic surfaces with 
different wetting properties and showed the variations 
of diameter on surfaces with contact angles of 110° and 
130° under different velocities.  Li et al. examined the 
impact of a nanodroplet on a flat solid surface using 
molecular dynamics simulations [5]. They compared 
the obtained maximum spreading factors with previous 
models in the literature and reduced the mean relative 
error in predicting the maximum spreading factor 
for cases of nanodroplet impact. Using molecular 

dynamics simulations, Kobayashi et al. investigated 
nanodroplet spreading at the early stage after the impact 
by changing the magnitude of the intermolecular force 
between the liquid and wall molecules [6]. They found 
that as the intermolecular force between the liquid 
and wall becomes stronger, the normalized spreading 
diameter of the first molecular layer on the wall remains 
less dependent on the impact velocity. Asadi simulated 
the impact of nanodroplets on an oblique surface using 
molecular dynamics and showed that nanodroplet 
spread increased only slightly by increasing the collision 
angle but increased hugely with increasing velocity 
[7]. Panahi and Asadi studied the distribution of nano 
and micro droplets spreading when droplets impacted 
an oblique surface [8]. They indicated that generalized 
exponential distribution shows better results than 
the other distributions for nano- and microdroplets 
spreading data.   
   We observed that experiments and dynamic simulations 
for obtaining data are expensive and time-consuming. 
A literature survey also indicated a lack of published 
information on the prediction of maximum diameter 
spreading of nanodroplets in coating processes. So, 
the main aim of this paper is to focus on the estimation 
and prediction of an unavailable (censored) maximum 
diameter sample belonging to a future sample based 
on the currently available sample, which is known as 
the informative sample. Many authors have considered 
predictive inference to solve challenging issues in 
engineering, chemistry, business, and biomedical 
sciences. Khan et al. proposed predictive inference on 
the basis of a doubly censored sample from a Rayleigh 
model [9]. Ahmed considered the Bayesian estimation 
and prediction of censored data [10]. Panahi and Asadi 
studied the modeling problem using splashing data 
and then predicted the censored data [11]. Chiang et 
al. introduced different model selection approaches 
for estimating and predicting the censored sample 
[12]. Basak and Balakrishnan considered the problem 
of predicting unit survival times from exponential 
distribution, which are not reported in a simple step-
stress testing experiment [13].
   In this paper, we first verified whether a generalized 
inverted exponential model can be used to fit this 
dataset, and then identify the related different point and 
interval prediction methods. For comparison purposes, 
we computed the prediction estimates and prediction 
intervals needed for future observation. The maximum 
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likelihood and Bayesian approaches were choosen 
to be studied as the point prediction methods. Also, 
the pivotal quantity and Bayesian viewpoint were 
proposed for constructing the prediction intervals. A 
schematic workflow representing the steps of this work 
is summarized in Fig. 1. 

2. Model Description

2.1. Probability density function (pdf)

The generalized inverted exponential distribution 
was introduced in the literature by Abouammoh 
and Alshingiti as a generalization of the inverted 
exponential distribution [14]. This distribution can be 
used for many applications, including accelerated life 
testing, coating processes, sea currents, wind speeds, 
etc. [15-17]. Let T be a positive random variable of 
maximum diameter spreading of nanodroplets with the 
probability density function fr(t) and the cumulative 
distribution function Fr(t) as:

                                                      		        (1)

FT(t) = F(t,α,β) = 1-[1-exp(-β / t)]α		            (2)

t > 0, α > 0, β > 0

where, α and β are the shape and scale parameters, 
respectively. This model (generalized inverted 
exponential model) has a unimodal and right skewed 
density function, depending on the shape parameter. In 
Fig. 2, we have plotted the probability density function 
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of the generalized inverted exponential model for some 
parameters.

Some known models are found to be sub-models of 
the proposed model. For instance,

• If α=1 then Eq. (1) reduces to the inverted exponential 
model.

• If the random variable T has a generalized inverted 
exponential model, then the random variable                  has 
the generalized exponential model.

2.2. The hazard and reliability functions

The hazard function is the ratio of the probability 
density function to the reliability function. It is a 
reliability measure that play a crucial role in real 
data analysis. The hazard function analysis is used in 
many fields such as epidemiology, manufacturing, 
medicine, actuarial statistics, reliability engineering, 
and economics. The hazard function is a metric which 
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T
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Fig. 1. The flow chart of the major contribution of this study.
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is usually used to identify the appropriate probability 
distribution of a particular mechanism. Based on fr(t) 
and Fr(t), the reliability and hazard functions of T are 
given by Eqs. (3) and (4), respectively [18].

rT(t) = 1- FT(t) = [1-exp(-β / t)]α                                                                             (3)

t > 0, α > 0, β > 0

                                                                                          (4)

In Fig. 3, we have plotted the hazard and reliability 
functions for β = 1 and different choices of α (α = 0.5, 
1, 2, 5). Fig. 3(a) shows that the curve increases at the 
initial stage but starts to decrease at some points; this 
indicates that the proposed model could be unimodal. 
These figures indicate that model 1 shows good 
statistical behavior. Also, Fig. 3(b) indicates that the 
reliability function for all values of decreases with time. 

2.3. Quantile Function and Median

The Quantile function is given by Eq. (5).

Q(u) = F-1(u)                                                                             (5)

Where u is a random variable uniformly distributed 
on (0,1) and F(u) is a cumulative distribution function.  
Therefore, the corresponding quantile function for 
model 1 can be written as:

                                                                                                                                  (6)

We obtain the median by substituting u = 0.5, in Eq. 
(6). So, we have:

                                                                                                                    (7)

Also, model 1 can be simulated using the following 
transformation:

                                                                     (8)

3. Point and Interval prediction of Censored data

   In this section, we consider different evaluations 
of the censored data. Let T1, ...Tn be the sample from 
the maximum diameter spreading of nanodroplets. 
Experiments and mechanical simulation are time-
consuming. So, we considered the data as a censored 
sample and predicted the unobserved (censored) data. 
For this purpose, we supposed that T1:n,..., TD:n is the 
observed data and we cannot observe the TD+1:n, ...Tn:n. 
The main aim is to obtain the prediction of ℑ = Ts+d:n 

(s = 1, 2, ...., n-D) of all the n-D censored units based 
on observed data T1:n, ...TD:n.We supposed two times 
(T1

* and T2
*) and observed three different cases for the 

observed data. Thus, based on Eq. (1) and using the left 
truncated model at T*, the joint density function of the 
censored (generalized Type-II hybrid censored) sample   
is as follows [19]:

                                               			          (9)

where, D = {D1, r or D2} and T* = {T1
*, Tr:n or T2

*} (for 
more details about this censoring scheme see [19,20]).
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3.1. Point Prediction

In this subsection, we obtain several point predictions 
for ℑ = Ts+D:n (s = 1, 2,..., n-D) based on T1:n, ..., TD:n 
using likelihood and the Bayesian approach.

3.1.1. Likelihood prediction approach

We considered the prediction of ℑ = Ts+D:n 
based on T1:n, ..., TD:n using a likelihood approach 
(PLP). Based on Eq. (1), the conditional density 
of ℑ = Ts+D:n (s = 1, 2,..., n-D) is given by [21,22]:

                (10)

Using Eqs. (9) and (10), the predictive log-likelihood 
function, dropping the constant term, can be written as 
Eq. (11).

                           (11)

So, the prediction of ℑ is readily obtained by solving 
the equations ∂l(ℑ, α, β) / ∂ℑ = 0, ∂l(ℑ, α, β)∂α = 0, and 
∂l(ℑ, α, β) / ∂β = 0. These equations can be  evaluated 
numerically by some suitable procedures. 

3.1.2. Bayesian approach

In this subsection, we compute the prediction of τ = 
Ts+D:n  based on T1:n, ..., TD:n using a Bayesian approach 
(PBP). For this purpose, we assumed that α and β 
have independent gamma prior distributions with the 
following probability density functions:

                            and                                                (12)

From Eq. (9), the joint posterior up to proportionality 
can be written as:

                   (13)

Therefore using Eqs. (10) and (11), the Bayesian 
predictive distribution can be written as [21,22]:
                                                
                                               			       (14)

Eq. (14) cannot be evaluated analytically. 
Therefore, a Markov chain Monte Carlo (MCMC) 
sample is used to obtain the consistent estimator 
f*(ℑ/T) (see [23-27]). The Bayesian point predictors of 
ℑ = Ts+D:n under a square (                            ) and Linex
(                                                       ) loss functions are:

                                                  and       
(15)                                   

3.2. Interval Prediction

A prediction interval is an interval which uses the 
results of a past sample and contains the results of 
a future sample from the same population with a 
specified probability. In this subsection, we consider the 
prediction intervals of ℑ = Ts+D:n based on T1:n, ..., TD:n. 
A 100(1-γ)% prediction interval for ℑ = Ts+D:n can be 
written as (L(T), U(T)) such that P(L(T)< ℑ <U(T))=1-γ.

3.2.1. Pivotal Quantity

We chose  

as a pivotal quantity for obtaining the prediction interval 
for ℑ = Ts+D:n. So, the prediction interval for ℑ = Ts+D:n is 
given by Eq. (16) [28]:

						          (16)
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where,                                               and Bγ are the percentile 
of Beta(s, n-D+s+1).

3.2.2. Bayesian Interval

In this subsection, using the Eq. (14), we obtain the 
symmetric 100(1-γ)% predictive interval (LBayes(T), 
UBayes(T)) for ℑ = Ts+D:n by solving the following two 
nonlinear equations:

                                                   and 
                                                               (17)

where,                                                         and we can 
also use the MCMC approach to sample from Eq. (14).

4. Existing experimental data

In this section, we analyze the data of the maximum 
spreading diameter of nanoparticles obtained in Hai-Bao 
et al. [4]. The data consists of the maximum diameter 
obtained on hydrophobic surfaces. Four different 
nanoparticle impact velocities were used to find data on 
two surfaces with contact angles of θ=110° and θ=130°. 
We first drew the surface evaluation data plot in Fig. 4. 
It is observed that for fixed contact time, as the impact 
velocity increases, the maximum spreading diameter 
of nanoparticle increases. For clarification, we present 
the box-plot of this data in Fig. 5. This plot shows the 
descriptive statistics of the proposed data. The solid 
line in the box represents median value and the box 
represents the 25-75% percentiles. Also, the range 
bar represents 5 and 95% percentiles. Some positive 
asymmetry exists as Median-Upper Quartile> Lower 
Quartile-Median. Also, we see that there are no outliers 
in the data set. 

After obtaining the previous data, we then compared 
the proposed model (generalized inverted exponential 
model) with the three following models:
● Generalized Inverted Exponential Model (Model 1),
● Inverse Weibull Model (Model 2),
● Inverse Gamma Model (Model 3),
● Inverse Kumaraswamy Model (Model 4).

The maximum likelihood approach (MLE) is 
considered to evaluate the model’s associated 
parameters. Table 1 represents the MLEs of the model 
parameters and the following criteria;

● Akaike information criterion (AIC):
  AIC = 2(Number of  model's parameters) - 2log 
(Liklihood Function of the model)
 ● Bayesian information criterion (BIC):  
   BIC = (Number of model's parameters) × log(Sample 
size)-2log(Liklihood function of the model)
● Log-likelihood (-Log L) values: 
   -Log L = -log(Liklihood function of the model)

The results indicate that the generalized inverted 
exponential model (model 1) has the lowest AIC, BIC, 
and  values, and so was chosen as the adequate and best 
model. We also employed two further tests to check 
whether the proposed model (model 1) is a valid model 
for maximum spreading diameter of nanodroplets data. 
We considered the following tests:
● Kolmogrov-Smirnov test (ΨKS):
ΨKS = Sup|Empirical distribution function - Distribution 
function|.
● Anderson-Darling test (ΨAD):
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Table 1. MLEs, AICs, BICs, and -logL for the different models.

-LogLBIC     AIC    MLEsModels                       

97.05615200.9803198.1123α =15.4947
β =47.1558Model 1                       

99.73521206.3384203.4704α =2.74542
β =12.3989Model 2                               

97.82397202.5159199.6479α =7.28943
β =101.8324Model 3     

99.48426205.8365202.9685α =2279.725
β =2.97415Model 4             

The results presented in Table 2 show that the 
proposed model has the smallest ΨKS and ΨAD values. 
So, we concluded that this model  is good for analysis 
of the data.

Table 2. The values of  ΨKS and ΨAD for the different models.

Model 4Model 3     Model 2 Model 1Tests

0.12754660.12258780.12912070.1141092 ΨKS

0.75405570.67755070.77819730.6504538 ΨAD

 				  
For more comparison, the empirical distribution 

function and the cumulative distribution function 
(CDF) plot as well as the probability-probability (P-P)
plot and the quantile-quantile (Q-Q) plot are also 
given to show the appropriateness of model 1 for the 
considered data set; see Figs. 6-8, respectively. Based 
on Fig. 6, we observe that the fitted survival function of 
Model 1 is identical and fits the data well. Furthermore, 
Figs. 7 and 8, show the data do not deviate dramatically 
from the line.

Now, we consider the prediction problem of the 
censored data using the observed data. For comparison 
purposes, we considered the three different cases for 
censored data.

Case 1: n = 31, T1 = 23, T2 = 24, Xr = 17.377 
Case 2: n = 31, T1 = 23, T2 = 24, Xr = 23.450
Case 3: n = 31, T1 = 23, T2 = 24, Xr = 25.535

In cases 1, 2 and 3, we observed 27, 28 and 29 data. 
So, we predict the as ℑ = Ts+D:n (s = 1, 2,..., n-D):

Case 1: ℑ = Ts+27:31 (s = 1, 2, 3,4)
Case 2: ℑ = Ts+28:31 (s = 1, 2, 3)
Case 3: ℑ = Ts+29:31 (s = 1, 2)

The different point and interval predictors of 

ℑ = Ts+D:n (s = 1, 2,..., n-D) are computed using the 
different methods discussed in this section. The results 
are displayed in Tables 3 and 4, respectively.

From Table 3, it is observed that the different point 
predictors are quite close to the true values. Also, it is 

Fig. 7. The P-P plot based on the maximum diameter data.

Fig. 8. The Q-Q plot based on the maximum diameter data.

Fig. 6. Empirical and cumulative distribution function based on the 
maximum diameter data.
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Table 3. Different point prediction values.

PBPPLP     True Values    sCases                       
23.542123.373323.45001

Case 1                            
23.915723.862923.82802
24.889324.764324.68103
25.773225.685325.53504
23.874523.847423.82801

Case 2                            24.823324.773524.68102
25.719825.659625.53503
24.802024.712124.68101

Case 3                         
25.679225.593625.53502

 	 			 
Table 4. Different interval prediction values.

PBPPLP     True Values    sCases                       
(22.59,26.09)(22.92,25.96)23.45001

Case 1                            
(22.87,26.65)(23.01,26.58)23.82802
(23.16,26.97)(23.33,26.89)24.68103
(23.25,27.19)(23.61,27.06)25.53504
(22.21,27.11)(22.47,26.97)23.82801

Case 2                            (23.16,27.73)(23.33,27.57)24.68102
(23.27,27.92)(23.62,27.81)25.53503
(23.93,28.52)(24.03,28.38)24.68101

Case 3                         
(24.05,29.07)   (24.21,28.86)        25.53502

clear that the different prediction intervals contain the 
true values, and this verifies the applicability of the 
prediction techniques for real data.

5. Conclusion

In this paper, we considered the estimation of the 
unavailable or censored maximum spreading diameter 
of nanoparticle data for the impact of a nanodroplet 
on hydrophobic surfaces. Since it is not possible to 
observe complete data in many experiments of nano 
coating processes, prediction of a future sample, based 
on the currently available sample, is very important in 
the analysis of experimental data. In the present work, 
we have considered a potential model to estimate the 
maximum spreading diameter of nanoparticle data. A 
detailed description of the proposed model, its parameter 
estimation, and model selection techniques have been 
provided. Based on the proposed model, we provided the 
point and interval prediction of the censored maximum 
spreading diameter of nanoparticle data. The obtained 
results indicate that the proposed point methods work 
well and the interval methods include the corresponding 
real values.

Nomenclature

Akaike information criterionAIC    
Bayesian information criterionBIC     
Random variable which is uniformly U          
Number of observed dataD         
Positive random variableT          
Value of the positive random variablet           
Probability density functionfr(t)      
Cumulative distribution functionFr(t)     
Unknown shape parameter of the modelα          
Unknown scale parameter of the modelβ          
Hazard functionrT(t)      
Reliability functionhT(T)    
Quantile functionQ(u)     
Random sample of size n from generalized 
inverted exponential model 

T1:n<...< Tn:n

Observed sampleT1:n<...< TD:n

Termination time of the experimentT*

sth Future order statistic where 
s = 1, 2, ..., n-D

TS+DN

Gamma prior distributionπ(0)
Joint posterior distributionπ(α,β|T)
Bayesian predictive distributionf*(TS+D:n|T)
Loss function
Bayesian point predictor under a square 
error loss function

ℑBL-Square

Bayesian point predictor under a Linex 
error loss function

ℑBL-Linex

Pivotal quantityℜ
Lower predictive intervalLBayes(T)
Upper predictive intervalUBayes(T)
Upper percentile of the standard normal 
distribution

γ

Kolmogrov-Smirnov testΨKS

Anderson-Darling testΨAD

ˆ( , )L θ θ
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