[1] J.V.R.S. Souzaa, J.C.C. Saada, R.M. Sánchez-Romána, L. Rodríguez-Sinobas, No-till and direct seeding agriculture in irrigated bean: Effect of incorporating crop residues on soil water availability and retention, and yield, Agr. Water Manag. 170 (2016) 158-166.
[2] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications, A review, J. Adv. Res. 6 (2015) 105-121.
[3] A. Pourjavadi, R. Soleyman, G.R. Bardajee, Novel superabsorbent hydrogel based on natural hybrid backbone: Optimized synthesis and its swelling behavior, Bull. Korean Chem. Soc. 30 (2009) 2680-2686.
[4] X.N. Shi, W.B. Wang, A.Q. Wang, Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly(sodium acrylate-costyrene)/attapulgite superabsorbent hydrogels, Colloid. Surface B, 88 (2011) 279-286.
[5] A. Pourjavadi, H. Hosseinzadeh, Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co -Acrylamide Superabsorbent Hydrogel. B. Kor. Chem. Soc. 31 (2010) 3163-3172.
[6] K.M. Raju, M.P. Raju, Synthesis and swelling properties of superabsorbent copolymers, Adv. Polym. Tech. 20 (2001) 146-154.
[7] S.W. Ali, S.A.R.J. Zaidi, Synthesis of copolymeric acrylamide/potassium acrylate hydrogels blended with poly(vinyl alcohol): Effect of crosslinking and the amount of poly(vinyl alcohol) on swelling behavior, Appl. Polym. Sci. 98 (2005)1927-1931.
[8] L. Xu , X. Zhang, C. Zhu, Y. Zhang, C. Fu, B. Yang, L. Tao, Y. Wei, Nonionic polymer cross-linked chitosan hydrogel: preparation and bioevaluation, J Biomat Sci-Polym Ed. 24 (13) (2013)1564-1574.
[9] X. Zhang, K. Wang, M. Liu, X. Zhang, L. Tao, Y. Chen, Y. Wei, Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives, Nanoscale, 7 (2015)11486-11508.
[10] N. Seetapan, J. Wongsawaeng, S. Kiatkamjornwong, Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers, Polym. Advan. Technol. 22 (2011) 1685-1695.
[11] B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Lia, Y. Wei, Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier, Polym. Chem. 3 (2012) 3235-3238.
[12] D. Valade, L.K. Wong, Y. Jeon, Z. Jia, M.J. Monteiro, Materials and devices containing hydrogel-encapsulated cells, J. Polym. Sci. A1, 51 (2013) 129-138.
[13] M. Sairam, V.R. Babu, B. Vijaya, K. Naidu, T.M. Aminabhavi, Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles, Int. J. Pharm. 320 (2006) 131-136.
[14] H.A. Abd El-Rehim, Swelling of radiation crosslinked acrylamide-based microgels and their potential applications, Radiat. Phys. Chem. 74 (2005) 111-117.
[15] B. Bolto, T. Tran, M. Hoang, Z.L. Xie, Crosslinked poly(vinyl alcohol) membranes, Prog. Polym. Sci. 34 (2009) 969-981.
[16] T. Puspasari, N. Pradeep, K.V. Peinemann, Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection, J. Membrane Sci. 491 (2015) 132-137.
[17] M. Shafiq, A. Sabir, A. Islam, S.M. Khan, S.N. Hussain, M.T.Z.Z. Butt, T. Jamil, Development and performance characteristics of silane crosslinked poly(vinyl alcohol)/chitosan membranes for reverse osmosis, J. Ind. Eng. Chem. 48 (2017) 99-107.
[18] X. Jin, L. Li, R. Xu, Q. Liu, L. Ding, Y. Pan, C. Wang, W. Hung, K. Lee, K., T. Wang, Effects of thermal cross-linking on the sructure and property of asymmetric membrane prepared from the polyacrylonitrile, Polymers-Basel, 10 (2018) 539.
[19] A.A. Ibrahim, B.Y. Jibril, Controlled release of parafin wax/rosin-coated fertilizers, Ind. Eng. Chem. Res. 44 (2005) 2288-2291.
[20] R. Liang, H. Yuan, G. Xi, Q. Zhou, Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it, Carbohyd. Polym. 77 (2009) 181-187.
[21] M. Eid, In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation, Nucl. Instrum. Meth. B, 266 (23) (2008) 5020-5026.
[22] A.K. Bajpai, A. Giri, Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical, Carbohyd. Polym. 53 (2003) 271-279.
[23] A.I. Raafat, M. Eid, M.B. El-Arnaouty, Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications Nucl. Instrum. Meth. B, 283 (2012) 71-76.
[24] M. Hashem, S. Sharaf, M.M. El-Hady, A. Hebeish, Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethyl cellulolse-hydrogel -ZnO-nanocomposites, Carbohyd. Polym. 95 (2013) 421-427.
[25] S. Kiatkamjornwong, Superabsorbent polymers and superabsorbent polymer composites, ScienceAsia, 33 Supplement 1 (2007) 39-43.
[26] W. Luo, W. Zhang, P. Chen, Y. Fang, Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via γ-ray irradiation technique, J. Appl. Polym. Sci. 96 (2005) 1341-1346.
[27] K. Kabiri, H. Omidian, S.A. Hashemi, M.J. Zohuriaan-Mehr, Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate, Eur. Polym. J. 39 (2003) 1341-1348.
[28] D.R. Biswal, R.P. Singh, Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer, Carbohydr. Polym. 57 (2004) 379–387.
[29] W.M. Leung, D. E. Axelson, J. D. Van Dyke, Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). J. Polym. Sci. A, 25 (1987) 1825-1846.
[30] R.S. Tomar, I. Gupta, R. Singhal, A.K. Nagpal, Synthesis of poly (acrylamide co-acrylic acid)-based superabsorbent hydrogels by gamma radiation: study of swelling behavior and network parameters, Des. Monomers Polym. 10 (2007) 49-66.
[31] D. Swantomo, R. Rochmadi, K.T. Basuki, R.Sudiyo, Synthesis and characterization of graft copolymer rice straw cellulose-acrylamide hydrogels using gamma irradiation, Atom Indonesia, 39 (2013) 57-64.
[32] S. Kim, G. Iyer, A. Nadarajah, J.M. Frantz, A.L. Spongberg, Polyacrylamide hydrogel properties for horticultural applications, Int. J. Polym. Anal. Ch. 15 (2010) 307-318.
[33] L. Chen, X. Qiu, M. Deng, Z. Hong, R. Luo, X. Chen, X. Jing, The starch grafted poly(L-lactide) and the physical properties of its blending composites, Polymer, 46 (2005) 5723-5729.
[34] L. Chen, X. Qiu, Z. Xie, Z. Hong, J. Sun, X. Chen, X. Jing, Poly (l-lactide)/starch blends compatibilized with poly (l-lactide)-g-starch copolymer, Carbohyd. Polym. 65 (2006) 75-80.
[35] H.B. Hopfenberg, K.C. Hsu, Swelling-controlled, constant rate delivery systems, Polym. Eng. Sci. 18 (1978) 1186-1191.
[36] S.W. Kim, Y.H. Bae, T. Okano, Hydrogels: Swelling, drug loading, and release, Pharm. Res. 9 (1992) 283-290.
[37] A. Nadler, E. Perfect, B. D Kay, Effect of polyacrylamide application on the stability of dy and wet aggregates, Soil Sci. Soc. Am. J. 60 (1996) 555-561.
[38] R.E. Sojka, R.D. Lentz, C.W. Ross, T.J. Trout, D.L. Bjorneberg, Aase, J. K. Polyacrylamide effects on infiltration in irrigated agriculture, J. Soil Water Conserv. 53 (1998) 325-331.
[39] P. Jobin, J. Caron, P. Bernier, B.J. Dansereau, Impact of two hydrophilic acrylic-based polymers on the physical properties of three substrates and the growth of Petunia xhybrida "Brilliant Pink", J. Am. Soc. Hortic. Sci. 129 (2004) 449-457.
[40] H. A. Abd El-Rehim, E. A. Hegazy, H. L. Abd El-Mohdy, Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance, J. Appl. Polym. Sci. 93 (2004) 1360-1371.
[41] A.I. Al-Humaid, A.E. Moftah, Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress, J. Plant Nutr. 30 (2007) 53-66.