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recycling of the catalyst was also examined. For this 
purpose, the reaction of phthalic acid and n-nonanol 
in the presence of Fe3O4@ZrO2-SO3H was studied. 
In this procedure, the catalyst was separated from 
the product after the completion of the reaction by 
attaching an external magnet, and the conversion was 
calculated after the work-up. The catalyst was washed 
with hot dry acetone to remove residual product, then 
dried and reused in a subsequent reaction. The extent 
of conversion did not dropped significantly after four 
reuses of the catalyst. This means that the nature of the 
nano-catalyst was slightly changed after each run and 
_SO3H moieties were tightly anchored with the nano-
catalyst. The average extent of the conversion of four 
consecutive runs was 70%, which clearly demonstrates 
the practical recyclability of this catalyst (Figure 8). 

4. Conclusion

The preparation, characterization and use of the 
Fe3O4@ZrO2-SO3H nano-catalyst in the esterification 
reaction of mono- and dicarboxylic acids have been 
reported. In summary, we showed that the prepared 
nano-catalyst is an efficient heterogeneous magnetic 
catalyst for this purpose. Industrial processes will be 
easier, cleaner, and less complicated when using this 
catalyst. The catalyst can be readily separated from 
the reaction mixture magnetically and reused several 
times without any significant loss of activity. The 
clean reaction conditions and utilization of a green and 
magnetically separable heterogeneous catalyst are the 
main advantages of this catalyst.
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The capability of Fe3O4@ZrO2-SO3H toward the 
esterification of mono- (Table 5) and dicarboxylic 
acids (Table 6) by different alcohols was also 
investigated. Most of the prepared compounds are 
industrially valuable compounds of plasticizers and 
synthetic ester base lubricants. The FT-IR spectra 
of the prepared esters and diesters are in accordance 
with the spectra reported in the Spectral Database for 
Organic Compounds (SDBS) and reported values in the 
literature. We could not find any regular relationship 
between the structures of alcohols and carboxylic acids 
on one hand and the extent of conversion on the other 
hand. As a major trend, higher alcohols and long alkyl 
chain dicarboxylic acids (adipic acid and sebacic acid, 
Table 5, Entries 14-19) have better reaction yields than 
that of monocarboxylic acids. This is a positive point, 
since the diesters of long chain dicarboxylic acids are 
considered as the base oil for lubricants due to good 
properties at high and low temperatures, excellent 
viscosity vs. temperature relationship, low volatility, 
lubricity, additive solubility, frictional properties, and 
biodegradability [2,39]. Ethyl esters were obtained in 
low yields even in the presence of the excess amount of 
ethanol (ethanol used in and as solvent) due to the low 
reaction temperature and volatility of EtOH. A possible 
mechanism for the esterification reaction catalyzed by 
Fe3O4@ZrO2-SO3H is proposed as Scheme 3.

3.4. Reusability of Fe3O4@ZrO2-SO3H  nano-catalyst

For the practical applications of this new magnetic 
solid acid nanocatalyst, the possibility of magnetic 
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Scheme 3. Proposed reaction pathway for esterification in the 
presence of  Fe3O4@ZrO2-SO3H. Fig 8. Recyclability of Fe3O4@ZrO2-SO3H.
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Table 5. Reaction conditions and conversions of monocarboxylic acids by various alcohols.a 

aThe amount of catalyst was 10 wt% of total weight of carboxylic acid and alcohol.

R OH

O
+ R'OH

Fe3O4@ZrO2-SO3H
Toluene, Reflux

R OR'

O

 

Entry Carboxylic Acid Alcohol Acid/alcohol molar ratio Reaction Time (h) Conversion (%) 

1 
COOH

 

OH
EtOH solvent 12 0 

2 
OH

1:3 12 10 

3 

OH

 
1:3 12 15 

4 

OH

1:1 12 10 

5 OH 1:3 12 16 

6 
Cl

OH

O  

OH

1:3 12 61 

7 

OH

1:1 12 25 

8 OH

 
1:3 12 50 

9 CH2OH

 
1:1 12 N.R. 

10 

Cl

OH

O

Cl
Cl

 

OH

1:3 12 57 

11 

OH

1:1 12 44 

12 OH

 
1:3 12 62 

13 
COOH

Cl

NO2  

OH
EtOH solvent 8 20 

14 OH

 
1:3 12 33 
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Table 6. Reaction conditions and conversions of dicarboxylic acids by various alcohols.a 

R OH

O

+ R'OH

Fe3O4@ZrO2-SO3H
Toluene, Reflux

O

HO R OR`

OO

R`O

Entry Diacid Alcohol Diacid/alcohol molar 
ratio Reaction Time (h) Conversion (%) 

1 

COOH

COOH OH
EtOH solvent 8 58 

2 
OH

1:3 12 7 

3 
OH

1:3 12 40 

4 
OH

1:3 12 54 

5 
OH

1:3 12 63 

6 
OH

1:3 12 67 

7 
OH

1:1 8 78 

8 

OH

1:3 12 83 

9 
OH

Ph
1:1 12 69 

10 OH 1:3 12 48 

11 HOOC

COOH

OH
EtOH solvent 8 25 

12 

OH

1:3 12 57 

13 OH 1:3 12 60 

14 
OH

1:3 12 75 

15 
OH

HO O

O
OH

1:3 12 80 

16 

OH

1:1 12 76 

17 OH 1:3 12 80 

18 
OH

1:1 12 82 

19 CH2OH 1:1 12 75 

20 OH

O

HO

O

OH 1:1 12 76 

aThe amount of catalyst was 10 wt% of total weight of carboxylic acid and alcohol.
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