A green approach for the synthesis of silver nanoparticles using Lithospermum officinale root extract and evaluation of their antioxidant activity

Document Type: Research Paper


1 Phytochemical Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran.

2 Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran.

3 Applied Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran.


Recently, the synthesis of silver nanoparticles has become an important subject in the bionanotechnology field. Many different chemical and physical methods could be used for silver nanoparticles synthesis, but they are limited due to the usage of toxic chemicals and the production of dangerous by-products. However, the usage of plant extract for silver nanoparticles synthesis is a green single-step method without using toxic chemicals. Herein, silver nanoparticles were synthesized using <i>Lithospermum officinale</i> root aqueous extract and their antioxidant activity was evaluated in vitro. The results showed that 1 ml of the extract could reduce 9 ml of silver ions (1 mM) to silver nanoparticles by heating the reaction mixture (60 ºC) for 6 hours at pH 7.0. The synthesized silver nanoparticles were detected by UV–Vis spectroscopy, TEM, FT-IR, DLS, and XRD. The synthesized silver nanoparticles spectrum had a maximum peak at 390nm, and TEM analysis indicated spherical particles, higher stability (zeta potential: -15.3 mV) and an average size of 7 nm. The antioxidant activity of the synthesized silver nanoparticles was 0.07 mg/ml compared to <i>L. officinale</i> root aqueous extract (0.142 mg/ml) which indicated higher antioxidant activity. So, it is concluded that the synthesized silver nanoparticles could be considered a clinical therapeutic potential due to its antioxidant property. 


  • Green method for synthesis of the silver nanoparticles using Lithospermum officinale.
  • Evaluation of antioxidant activity of synthesized silver nanoparticles. 
  • Therapeutic potential of the synthesized nanoparticles due to their antioxidant activity.


Main Subjects

[1] F.U. Khan, Y. Chen, Z.U.H.K. Khan, A. Ahmad, K. Tahir, L. Wang, M.R. Khan, P. Wan, Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent, J. Photoch. Photobio. B. 164 (2016) 344-351.
[2] C.M. Cobley, S.E. Skrabalak, D.J. Campbell, Y. Xia, Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications, Plasmonics, 4 (2009) 171-179.
[3] S. Jeong, H. Choi, J.Y. Kim, T. Lee, Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics, Part. Part. Sys. Charact. 32 (2015) 164-175.
[4] K.S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B. 110 (2006) 19220-19225.
[5] V. Thamilselvi, and K. V. Radha, A review on the diverse application of silver nanoparticle, IOSR J. Pharm. 7 (2017) 21-27.
[6] M.Y. Babu, V.J. Devi, C.M. Ramakritinan, R. Umarani, N. Taredahalli, A.K. Kumaraguru, Application of biosynthesized silver nanoparticles in agricultural and marine pest control, Curr. Nanosci. 10 (2014) 1-8.
[7] S.M. Ali, N.M.H. Yousef, N.A. Nafady, Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi, J. Nanomater. 2015 (2015) Article ID 218904, doi:10.1155/2015/218904.
[8] M.S. Abdel-Aziz, M.S.Shahee, A.A. El-Nekeety, M.A. Abdel-Wahhab, Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc. 18 (2014) 356-363. 

[9] A. Phull, Q. Abbas, A. Ali, H. Raza, S. Jakim, M. Zia, I. Haq, Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crudeextract of Bergenia ciliate, Fut. J. Pharm. Sci. 2 (2016) 31-36.
[10] E.E. Elemike, O.E. Fayemi, A.C. Ekennia, D.C. Onwudiwe, E.E. Ebenso, Silver nanoparticles mediated by Costus afer leaf extract: synthesis, antibacterial, antioxidant and electrochemical properties, Molecules, 22 (2017) 701.
[11] T. Togashi, K. Saito, Y. Matsuda, I. Sato, H. Kon, K. Uruma, M. Ishizaki, K. Kanaizuka, M. Sakamoto, N. Ohya, M. Kurihara, Synthesis of water-dispersible silver nanoparticles by thermal decomposition of water-soluble silver oxalate precursors, J. Nanosci. Nanotechno. 14 (2014) 6022-6027.
[12] R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin, T. Scheper, Electrochemical method for the synthesis of silver nanoparticles, J. Nanopart. Res. 11 (2009) 1193-1200.
[13] S. Machmudah, T. Takayuki Sato, Wahyudiono, M. Sasaki, M. Goto, Silver nanoparticles generated by pulsed laser ablation in supercritical CO2 medium, High Pressure Res. 32 (2012) 1-7.
[14] A. Pal, S. Shah, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent, Mater. Chem. Phys. 114 (2009) 530-532.
[15] H. Wang, X. Qiao, J. Chen, S. Ding, Preparation of silver nanoparticles by chemical reduction method, Colloid. Surface. A. 256 (2016) 111-115.
[16] K. Gudikandula, S.C. Maringanti, Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties, J. Exp. Nanosci. 11 (2016) 714-721.
[17] H.M.M. Ibrahim, Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms, J. Radiat. Res. Appl. Sci. 8 (2015) 265-275.
[18] H. Parab, N. Shenoy, S.A. Kumar, S.D. Kumar, A.V.R. Reddy, One pot spontaneous green synthesis of gold nanoparticles using cocos nucifera (coconut palm) coir extract, J. Mater. Envir. Sci. 7 (2016) 2468-2481.
[19] S.A. Aromal, D. Philip, Green synthesis of gold nanoparticles using Trigonellafoenum-graecum and its size dependent catalytic activity, Spectrochim. Acta Part A. 97 (2012) 1-7. 

[20] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, J. Adv. Res., 7 (2016) 17-28.
[21] M. Ndikau, N.M. Noah, D.M. Andala, E. Masika, Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract, Int. J. Anal. Chem. 2017 (2017) Article ID 8108504, doi:10.1155/2017/8108504.
[22] N. Amini, G. Amin, Z. Jafari Azar, Green synthesis of silver nanoparticles using Avena sativa L. extract, Nanomed. Res. J. 2 (2017) 57-63.
[23] B. Habibi, H. Hadilou, S. Mollaei, A. Yazdinezhad, Green synthesis of Silver nanoparticles using the aqueous extract of Prangos ferulaceae leaves, Inter. J. Nano Dim. 8 (2017) 132-141.
[24] J. Saha, A. Begum, A. Mukherjee, S. Kumar, A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye, Sust. Envir. Res. 27 (2017) 245-250.
[25] I. Fatimah, Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation, J. Adv. Res. 7 (2016) 961-969.
[26] S. Ahmed, M. Ahmad, B. L. Swami, S. Kram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J. Radiat. Res. Appl. Sci. 9 (2016) 1-7.
[27] K. Jemal, B.V. Sandeep, S. Pola, Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles, J. Nanomater. 2017 (2017) Article ID 4213275, 11 pages, doi:10.1155/2017/4213275.
[28] D. Sarkar, G. Paul, Green synthesis of silver nanoparticles using Mentha asiatica (Mint) extract and evaluation of their antimicrobial potential, Int. J. Curr. Res. Biosci. Plant Biol. 4 (2017) 77-82.
[29] K. Schlesier, M. Harwat, V. Boèhm, R. Bitsch, Assessment of antioxidant activity by using different in vitro methods, Free Rad. Res. 36 (2002) 177-187.
[30] S.A. Baba, S.A. Malik, Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of ArisaemajacquemontiiBlume, J. Taibah Uni. Sci. 9 (2015) 449-454. 

[31] A. Verma, M.S. Mehata, Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity, J. Radiat. Res. Appl. Sci. 9 (2016) 109-115.
[32] M.B. Kasture, P. Patel, A.A. Prabhune, C.V. Ramana, A.A. Kulkarni, B.L.V. Prasad, Synthesis of silver nanoparticles by sophoro lipids: Effect of temperature and sophorolipid structure on the size of particles, J. Chem. Sci. 120 (2008) 515-520.
[33] B.S. Maria, A. Devadiga, V.S. Kodialbail, M.B. Saidutta, Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract, Appl. Nanosci. 5 (2015) 755-762.
[34] A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides, Langmuir, 27 (2011) 15268-15274.
[35] B. Afreen, A. Vandana, Synthesis and characterization of silver nanoparticles by Rhizopus stolonier, Int. J. Biomed. Adv. Res. 2 (2011) 148-158.

[36] E.E. Elemike, D.C. Onwudiwe, O. Arijeh, H.U. Nwankwo, Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters, B. Mater. Sci. 40 (2017) 129-137.
[37] S. Das, P. Roy, S. Mondal, T. Bera, A. Mukherjee, One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis, Colloid. Surface. B. 107 (2013) 27-34.
[38] K. Tatsumi, M. Yano, K. Kaminade, A. Sugiyama, M. Sato, K. Toyooka, T. Aoyama, F. Sato, K. Yazaki, Characterization of shikonin derivative secretion in Lithospermum erythrorhizon hairy roots as a model of lipid-soluble metabolite secretion from plants, Front. Plant Sci. 7 (2016) 1066, doi: 10.3389/fpls.2016.01066.
[39] V. Goodarzi, H. Zamani, L. Bajuli, A. Moradshahi, Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles' synthesis, Mol. Biol. Res. Commun. 3 (2014) 165-174.