[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: ASME FED, 231 (1995) 99–105.
[2] S. Dinarvand, R. Hosseini, E. Damangir, I. Pop, Series solution for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation, Meccanica, 48 (2013) 643–652.
[3] M. Eftekhari Yazdi, A. Moradi, S. Dinarvand, Radiation effects on MHD stagnation point flow in a nanofluid, Res. J. Appl. Sci. Eng. Technol., 5 (22) (2013) 5201–5208.
[4] S. Khalili, R. Dinarvand, I. Hosseini, R. Dehkordi, H. Tamim, Stagnation-point flow and heat transfer of a nanofluid adjacent to linearly stretching/shrinking sheet: a numerical study, Res. J. Appl. Sci. Eng. Technol., 7 (2014) 83–90.
[5] G. De Vahl Davis, I.P. Jones, Natural convection in a square cavity: a benchmark numerical solution, Int. J. Numer. Meth. Fl., 3 (1983) 227–248.
[6] R.J. Krane, J. Jessee, Some detailed field measurements for a natural convection flow in a vertical square enclosure, 1
^{st }ASME-JSME Thermal Engineering Joint Conference, 1 (1983) 323–329.
[7] T.J.M. Fusegi, K. Hyun, B. Kuwahara, A. Farouk, Numerical study of three dimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat Mass Tran., 34 (1991) 1543–1557.
[8] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Tran., 46 (2003) 3639–3653.
[9] C.J. Ho, M.W. Chen, Z.W. Li, Numerical simulation of natural convection of nanofluid in a square enclosure: effect due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Tran., 51 (2008) 4506–4516.
[10] A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid, Int. J. Therm. Sci., 47 (2008) 1113–1122.
[11] N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids, Heat Mass Transfer, 39 (2003) 775–784.
[12] K.S. Hwang, J.H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water based nanofluids in a rectangular cavity, Int. J. Heat Mass Tran., 50 (2007) 4003–4010.
[13] S.P. Jang, S.U.S. Choi, Free convection in a rectangular cavity (Benard convection) with nanofluids, In: Proceedings of the IMECE, Anaheim, California, USA (2004).
[14] S. Dinarvand, A. Abbassi, R. Hosseini, I. Pop, Homotopy analysis method for mixed convection boundary-layer of a nanofluid over a vertical circular cylinder with prescribed surface temperature, Therm. Sci., 19 (2015) 549–561.
[15] X.Q. Wang, A.S. Mujumdar, C. Yap, Free convection heat transfer in horizontal and vertical rectangular cavities filled with nanofluids, In: International Heat Transfer Conference IHTC-13, Sydney, Australia (2006).
[16] G. Polidori, S. Fohanno, C.T. Nguyen, A note on heat transfer modeling of Newtonian nanofluids in laminar free convection, Int. J. Therm. Sci., 46 (2007) 739–744.
[17] S. Dinarvand, R. Hosseini, I. Pop, Unsteady convective heat and mass transfer of a nanofluid in Howarth’s stagnation point by Buongiorno’s model, Int. J. Numer. Method H., 25 (5) (2015) 1176–1197.
[18] H. Tamim, S. Dinarvand, R. Hosseini, I. Pop, MHD mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface: a comprehensive report of dual solutions, Heat Mass Transfer, 50 (2014) 639–650.
[19] M. Bahiraei, M. Hangi, Flow and heat transfer characteristics of magnetic nanofluids: A review, J. Magn. Magn. Mater., 374 (2015) 125–138.
[20] H. Tamim, S. Dinarvand, R. Hosseini, S. Khalili, I. Pop, Unsteady mixed convection flow of a nanofluid near orthogonal stagnation-point on a vertical permeable surface, J. Process Mech. Eng., 228 (3) (2014) 226–237.
[21] A. Jafari, S.M. Mousavi, T. Tynjala, P. Sarkomaa, CFD simulation of gravitational sedimentation and clustering effects on heat transfer of a nano-ferrofluid, In: PIERS Proceedings, Beijing, China, March 23–27 (2009).
[22] A.F. Ismail, W. Rashmi, M. Khalid, Numerical study on buoyancy driven heat transfer utilizing nanofluids in a rectangular enclosure, In: Proceedings of the UK-Malaysia engineering conference 2008, London (2008) 118–123.
[23] C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Therm. Sci., 49 (2010) 1345–1353.
[24] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf., 128 (3) (2006) 240–250.
[25] J.C. Maxwell Garnett, Colours in metal glasses and in metallic films, Philos. T. R. Soc. Lond., 203 (1904) 385–420.
[26] B. Ghasemi, S.M. Aminossadati, Brownian motion nanoparticles in a triangular enclosure with natural convection, Int. J. Therm. Sci., 49 (2010) 931–940.
[27] J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanopart. Res., 6 (6) (2004) 577-588.
[28] H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20 (1952) 571–581.
[29] J. Koo, C. Kleinstreuer, Laminar nanofluid in microheat-sinks, Int. J. Heat Mass Tran., 48 (13) (2005) 2652-2661.