Effect of Sn Doping on Structural and Optical Properties of 2D α-MoO3 Nanostructures

Document Type: Research Paper

Authors

1 Department of Physics, Shahrood University of Technology, Shahrood, Iran

2 Department of Chemistry, Shahrood University of Technology, Shahrood, Iran

Abstract

Undoped and Tin (Sn) doped Molybdenum trioxide (α-MoO3) nanostructured thin films (which has lamellar (2D) structure) have been prepared using a simple and cost effective technique of spray pyrolysis on glass substrates at 450 ℃. Surface morphology, optical and structural properties of samples have been investigated using FESEM, UV-Vis spectroscopy and XRD analysis techniques, respectively. FESEM images showed the formation of some discrete micro-spheres on the surface, which with the increasing in the amount of dopant homogenous and dense nano-platelets was grown on top of these micro-spheres. The XRD pattern analysis shows that all samples have been grown in orthorhombic (α-MoO3) crystal structure and except for the sample doped with 50 at% Sn which had a weak peak of SnO2, no peak have been observed corresponding to the incorporation of Sn. By increasing the amount of impurity, optical transmittance of samples were increased from ~27 to 50%. Also, the band gap of samples were calculated using transmission data. An increasing of band gap from 3.34 to 3.89 eV was observed with increasing in the amount of doping.

Keywords


[1] K.-K. Wang, F.-X. Wang, Y.-D. Liu, G.-B. Pan, Vapor growth and photoconductive property of single-crystalline MoO3 nanosheets, Mater. Lett., 102–103 (2013) 8-11.

[2] S. Balakumar, R.A. Rakkesh, A.K. Prasad, S. Dash, A.K. Tyagi, Nanoplatelet Structures of MoO3 for H2 Gas Sensors, IEEE, (2011 ) 514-517.

[3] M.C. Rao, K. Ravindranadh, A. Kasturi, M.S. Shekhawat, Structural Stoichiometry and Phase Transitions of MoO3 Thin Films for Solid State Microbatteries, Res. J. Recent Sci., 2(4) (2013) 67-73.

[4] M.B. Rahmani, S.H. Keshmiri, J.Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y.X. Lie, W. Wlodarski, K. Kalantar-zadeh, Gas sensing properties of thermally evaporated lamellar MoO3, Sens. Actuators, B, 145 (2010) 13-19.

[5] H.M. Martínez, J. Torres, L.D.L. Carreño, M.E. Rodríguez-García, Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique, Mater. Charact., 7 5 (2013) 184 - 193.

[6] J. Li, X. Liu, Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor, Materials Letters 112 (2013) 39-42.

[7] B. Kannan, R. Pandeeswari, B.G. Jeyaprakash, Influence of precursor solution volume on the properties of spray deposited α-MoO3 thin film,   Ceram. Int., 40 (2014) 5817-5823.

[8] H. Sinaim, A. Phuruangrat, S. Thongtem, T. Thongtem, Synthesis and characterization of heteronanostructured Ag nanoparticles MoO3 nanobelts composites, Mater. Chem. Phys., 132 (2012) 358-  363.

[9] S.-Y. Lin, C.-M. Wang, K.-S. Kao, Y.-C. Chen, C.-C. Liu, Electrochromic properties of MoO3 thin films derived by a sol–gel process, J. Sol-Gel Sci. Technol., 53 (2010) 51-58.

[10] G. Wang, T. Jiu, P. Li, J. Li, C. Sun, F. Lu, J. Fang, Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization,        Sol. Energy Mater. Sol. Cells, 120 (2014) 603-609.

[11] H.W. Choi, N.D. Theodore, T.L. Alford, ZnO–Ag–MoO3 transparent composite electrode for ITO-free, PEDOT: PSS-free bulk-heterojunction organic solar cells,    Sol. Energy Mater. Sol. Cells, 117 (2013) 446-450.

[12] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature, Curr. Appl. Phys., 7 (2007) 51-59.

[13] M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Sambasivam, S.N. Karthick, K. Vijayarangamuthu, A. Sendilkumar, K. Asokan, H.J. Kim, B.C. Choi, C. Venkateswaran, R. Mohan, ‘Li’ doping induced physicochemical property modifications of MoO3 thin film, Appl. Surf. Sci., 284 (2013) 624-633.

[14] A.A. Firooz, T. Hyodo, A.R. Mahjoub, A.A. Khodadadi, Y. Shimizu, Synthesis and gas-sensing properties of nano- and meso-porous MoO3-doped SnO2, Sens. Actuators, B, 147 (2010) 554-560.

[15] P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor, Sens. Actuators, B, 224 (2016) 282-289.

[16] V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors, Ceram. Int., 41 (2015) 14239-14244.

[17] L.-l. Sui, Y.-M. Xu, X.-F. Zhang, X.-L. Cheng, S. Gao, H. Zhao, Z. Cai, L.-H. Huo, Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor, Sens. Actuators, B, 208 (2015) 406-414.

[18] S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Structural, optical and electrochromic properties of Nb-doped MoO3 thin film, Appl. Surf. Sci., 254 (2008) 5895-5898.

[19] J. Kaur, V.D. Vankar, M.C. Bhatnagar, Effect of MoO3 addition on the NO2 sensing properties of SnO2 thin film, Sens. Actuators, B, 133 (2008) 650-655.

[20] M.M.Y.A. Alsaif, M.R. Field, T. Daeneke, A.F. Chrimes, W. Zhang, B.J. Carey, K.J. Berean, S. Walia, J. van Embden, B. Zhang, K. Latham, K. Kalantar-zadeh, J.Z. Ou, Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes, ACS Applied Materials & Interfaces, 8 (2016) 3482-3493.

[21] S. Balendhran, S. Walia, M. Alsaif, E.P. Nguyen, J.Z. Ou, S. Zhuiykov, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Field Effect Biosensing Platform Based on 2D α-MoO3, ACS Nano, 7 (2013) 9753-9760.

[22] M.M.Y.A. Alsaif, A.F. Chrimes, T. Daeneke, S. Balendhran, D.O. Bellisario, Y. Son, M.R. Field, W. Zhang, H. Nili, E.P. Nguyen, K. Latham, J. van Embden, M.S. Strano, J.Z. Ou, K. Kalantar-zadeh, High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes, Adv. Func. Mater., 26 (2016) 91-100.

[23] A.H. Omran Alkhayatt, S.K. Hussian, Fluorine highly doped nanocrystalline SnO2 thin films prepared by SPD technique, Mater. Lett., 155 (2015) 109-113.