Hollow alumina nanospheres as novel catalyst for the conversion of methanol to dimethyl ether

Document Type: Research Paper


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran,Iran

2 Institute of Water and Energy, Sharif University of Technology, P.O. Box 11365-8639, Tehran, I. R. Iran


This paper investigates hollow and porous alumina nanospheres that were previously synthesized to be used for the dehydration of methanol to dimethyl ether (DME). As hollow nanostructures possess characteristics such as low density and high surface to volume ratio, their catalytic activity between hollow and porous structure is compared. For this purpose, three most important parameters (acidity, temperature and weight hourly space velocity (WHSV)) affecting the performance of these catalysts were investigated. The catalysts were characterized by scanning electron microscopy (SEM), BET, X-ray diffraction (XRD), and the temperature programmed desorption of ammonia (NH3-TPD) techniques. Results show that the optimum operating condition for hollow alumina nanosphere can be achieved at temperature of 275 ºC and WHSV of 20 h-1 compared with operating condition for porous alumina at temperature of 325 ºC and WHSV of 20 h-1.


[1] G. Cai, Z. Liu, R. Shi, C. He, L. Yang, C. Sun, Y. Chang, Light alkenes from syngas via dimethyl ether, Appl. Catal. A. 125 (1995) 29-38.
[2] M. Xu, J. M. Lunsford, D.W. Goodman, A. Bhattacharya, Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Appl. Catal. A. 149 (1997) 289-301.
[3] T. Takeguchi, K. Yanagisawa, T. Inui, M. Inoue, Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu–Zn–Ga and solid acids
Appl. Catal. A: Gen. 192 (2000) 201-209.
[4] A.M. Arkharov, S.D. Glukhov, L. V. Grekhov, A. A. Zherdev, N. A. Ivashchenko, D. N
Kalinin, Use of Dimethyl Ether as a Motor Fuel and a Refrigerant, Chem. Petrol. Eng. 39 (2003) 330-336.
[5]. Q. Ge, Y. Huang, F. Qiu, S. Li, Bifunctional catalysts for conversion of synthesis gas to dimethyl ether, Appl. Catal. A. 167 (1998) 23-30.
[6] F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica–titania catalysts, Catal. Commun. 6 (2005) 542-549.
[7] J. Fei, Z. Hou, B. Zhu, H. Lou, X. Zheng, Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts, Appl. Catal. A. 304 (2006) 49-54.
[8] J. Xia, D. Mao, B. Zhang, Q. Chen, Y. Zhang, Y. Tang, Catalytic properties of fluorinated alumina for the production of dimethyl ether, Catal. Commun. 7 (2006) 362-366.
[9] J. Khom-in, P. Praserthdam, J. Panpranot, O. Mekasuwandumrong, Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases, Catal. Commun.
9 (2008) 1955-1958.
[10] R. Vakili, E. Pourazadi, P. Setoodeh, R. Eslamloueyan, M. R. Rahimpour, Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor, Appl. Energ. 88 (2011) 1211–1223.
[11] A. García-Trenco, A. Martínez, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity, Appl. Catal. A. 411-412 (2012) 170– 179.
[12] M. H. Zhang, Z. M. Liu, G. D. Lin, H. B. Zhang, Pd/CNT-promoted Cu ZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2 , Appl. Catal. A. 451 (2013) 28– 35.
[13] Y. Zhang, D. Li, Y. Zhang, Y. Cao, S. Zhang, K. Wang, F. Ding, V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation, Catal. Commun. 55 (2014) 49–52.
[14] F. Frusteri, G. Bonuraa, C. Cannilla, G. D. Ferrantea, A. Aloise, E. Catizzone, M. Migliori, G. Giordano, Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation, Appl. Catal. B 176–177 (2015) 522–531.
[15] Y. J. Lee, J. M. Kim, J. W. Bae, C. H. Shin, K. W. Jun, Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion, Fuel 88 (2009) 1915–1921.
[16]L. Liu, W. Huang, Z. h. Gao, L. h. Yin, Synthesis of AlOOH slurry catalyst and catalytic activity for methanol dehydration to dimethyl ether, J. Ind. Eng. Chem. 18 (2012) 123–127.
[17] Y. Sang, H. Liu, S. He, H. Li, Q. Jiao, Q. Wu, K. Sun, Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether, J. Energ. Chem. 22(2013)769–777.
[18] Z. Zuo, L. Wang, P. Han, W. Huang, Effect of surface hydroxyls on dimethyl ether synthesis
over the γ-Al2O3 in liquid paraffin: a computational study, J. Mol. Model 19 (2013) 4959–4967.
[19] S. M. Solyman, M. A. Betiha, The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether, Egyp. J. Petroleum. 23 (2014) 247-254.
[20] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, The effects of synthesis operation conditions on the properties of modified c-alumina nanocatalysts in methanol dehydration to dimethyl ether using factorial experimental design, Fuel. 139 (2015) 40–50.
 [21] F. Caruso, X. Shi, R. A. Caruso, A. Susha, Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles, Adv. Mater. 13(10) (2001) 740-744.
[22] Y. Sun, B. Mayer, Y. Xia, Metal nanostructures with hollow interiors, Adv. Mater. 15 (2003) 641-646.
[23] U. Jeong, Y. Wang, M. Ibisate, Y. Xia, Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres, Adv. Funct. Mater. 15 (2005) 1907-1921.
[24] Y. Wang, W. J. Tseng, A novel technique for synthesizing nanoshell hollow alumina particles, J. Am. Ceram. Soc. 92 (2009) S32–S37.
[25] R. G. Chaudhuri, S. Paria, Core/Shell nanoparticles: Classes, properties, synthesis mechanisms, characterization and Applications, Chem. Rev. 112 (2012) 2373–2433.
[26] M. S. Sadjadi, N. Rostamizadeh, A new strategy in the synthesis of hollow γ-Al2O3 nanosphere using alginate gel casting process, Res J Biotechnol. 11(4) (2016) 30-35.
[27] M. Firoozi, M. Baghalha, M. Asadi, The effect of micro and nano particle sizes of H ZSM-5 on the selectivity of MTP reaction, Catal. Commun. 10 (2009) 1582–1585.
[28] Z. Zeng, J. Yu, Z. Guo, Preparation of functionalized core-shell alumina/polystyrene composite nanoparticles, Macromol. Chem. Phys. 206 (2005) 1558–1567.
[29] T. Shirai, H. Watanabe, M. Fuji, M. Takahashi, Structural properties and surface characteristics on aluminum oxide powders, Annual Report of the Ceramics Research Laboratory Nagoya Institute of Technology. 9 (2009)  23-31.
[30] F. Arena, R. Dario, A. Parmaliana, A characterization study of the surface acidity of solid catalysts by temperature programmed methods, Appl. Catal. A. 170 (1998) 127-137.
[31] G. R. Moradi, R. Ghanei, F.Yaripour, Determination of the optimum operating conditions for direct synthesis of dimethyl ether from Syngas, Int. J. Chem. Reactor Eng. 5 (2007) A14-19.
[32] M. Fazlollahnejad, M. Taghizadeh, A. Eliassi, G. Bakeri, Experimental study and modeling of an adiabatic fixed-bed reactor for methanol dehydration to dimethyl ether, Chin. J. Chem. Eng. 17 (2009) 630-634.
[33] B.T. Diep, M.S. Wainwright, Thermodynamic equilibrium constants for the methanol-dimethyl ether-water system, J. Chem. Eng. Data. 32 (1987)330–333.
[34] S. S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou, D. I. Kondarides, Methanol dehydration to dimethylether over Al2O3 catalysts, Appl. Catal. B. 145 (2014) 136– 148.