FathinejadJirandehi, H., Adimi, M., Mohebbizadeh, M. (2015). Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles. Journal of Particle Science & Technology, 1(4), 215-223. doi: 10.22104/jpst.2015.270
Hassan FathinejadJirandehi; Maryam Adimi; Mohammad Mohebbizadeh. "Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles". Journal of Particle Science & Technology, 1, 4, 2015, 215-223. doi: 10.22104/jpst.2015.270
FathinejadJirandehi, H., Adimi, M., Mohebbizadeh, M. (2015). 'Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles', Journal of Particle Science & Technology, 1(4), pp. 215-223. doi: 10.22104/jpst.2015.270
FathinejadJirandehi, H., Adimi, M., Mohebbizadeh, M. Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles. Journal of Particle Science & Technology, 2015; 1(4): 215-223. doi: 10.22104/jpst.2015.270
Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles
1Young researchers and Elite club, Farahan Branch, Islamic Azad University, Farahan, Iran
2Department of Chemical engineering, Farahan branch, Islamic Azad University, Farahan, Iran
Abstract
Petrochemical manufacturing wastewaters often contain a high concentration of biodegradable com-pounds that possess either toxicity or activity inhibition to the biological unit. In this paper, COD removal from Petrochemical wastewaters by electro-Fenton process was studied. The effect of operating conditions such as reaction time, current density, pH, H2O2/Fe2+ molar ratio, and H2O2 of petrochemical wastewater (PW) (ml/l) on the performance of the process has been studied. The experimental results showed that COD was 75.52% removed by the reaction with OH radicals generated from electrochemically assisted Fenton’s reaction. With our cell design, the higher oxidation rate has been obtained applying a current of 57.01 mA, at pH 2.92 and in the presence of 0.3 mM Fe2+ as catalyst and at reaction time of 86.33 minutes.
[1] J.V.F.L. Cavalcanti, C.A.M. Abreu, M.N. Carvalho, M.A.M. Sobrinho, M. Benachour, O.S. Baraúna, Removal of effluent from petrochemical wastewater by adsorp-tion using organoclay, in: V. Patel (Ed.), Petrochemicals, Intech, Rijeka, 2012, pp. 277–294.
[2] Y. Yavuz, A.S. Koparal, Ü. Ö˘gütveren, Treatment of petroleum refinery waste-water by electrochemical methods, Desalination 258 (2010) 201–205.
[3] J.H.B. Rocha, M.M.S. Gomes, N.S. Fernandes, D.R. da Silva, C.A. Martínez-Huitle, Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry, Fuel Process. Technol. 96 (2012) 80–87.
[4] A. Coelho, A.V. Castro, M. Dezotti, G.L. Sant’Anna Jr., Treatment of petroleum refinery sourwater by advanced oxidation processes, J. Hazard. Mater. 137 (2006) 178–184.
[5] E. Brillas, I. Sirés, M.A. Oturan, Chem. Rev. 109 (2009) 6570–6631.
[6] I. Sirés, E. Brillas, Environ. Int. 40 (2012) 212–229.
[7] H.J. Lewerenz, C. Heine, K. Skorupska, N. Szabo, T. Hannappel, T. Vo-Dinh, S.A. Campbell, H.W. Klemm, A.G. Muٌoz, Photo electrocatalysis: principles, nanoemitter applications and routes to bio-inspired systems, Energy Environ. Sci. 3 (2010) 748–760.
[8] Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photo electrocatalytic degradation of phenol, J. Phy. Chem. C 112 (2007) 253– 259.
[9] J. Shang, S. Xie, T. Zhu, J. Li, Solid-state, planar photoelectrocatalytic devices using a nanosized TiO2 layer, Environ. Sci. Technol. 41 (2007) 7876–7880.
[10] Y. Xu, Y. He, X. Cao, D. Zhong, J. Jia, TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: A combination of highly effective thin-film PEC and conventional PEC processes on a single electrode, Environ. Sci. Technol. 42 (2008) 2612–2617.
[11] G. Dai, J. Yu, G. Liu, Synthesis and enhanced visible-light photoelectrocatalytic activity of p–n junction BiOI/TiO2 nanotube arrays, J. Phy. Chem. C 115 (2011) 7339–7346.
[12] G. Jiang, Z. Lin, L. Zhu, Y. Ding, H. Tang, Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films, Carbon 48 (2010) 3369–3375.
[13] A. Wang, Y.Y. Li, A.L. Estrada, Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation, Appl. Catal. B: Environ. 102 (2011) 378–386.
[14] S.J. Yuan, G.P. Sheng, W.W. Li, Z.Q. Lin, R.J. Zeng, Z.H. Tong, H.Q. Yu, Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell, Environ. Sci. Technol. 44 (2010) 5575–5580.
[15] X. Zhao, J. Qu, H. Liu, C. Hu, Photoelectrocatalytic degradation of triazinecontaining azo dyes at c-Bi2MoO6 film electrode under visible light irradiation (k > 420 nm), Environ. Sci. Technol. 41 (2007) 6802–6807.
[16] G. Jiang, Z. Lin, L. Zhu, Y. Ding, H. Tang, Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films, Carbon 48 (2010) 3369–3375.
[17] A. Wang, Y.Y. Li, A.L. Estrada, Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation, Appl. Catal. B: Environ. 102 (2011) 378–386.
[18] S.J. Yuan, G.P. Sheng, W.W. Li, Z.Q. Lin, R.J. Zeng, Z.H. Tong, H.Q. Yu, Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell, Environ. Sci. Technol. 44 (2010) 5575–5580.
[19] X. Zhao, J. Qu, H. Liu, C. Hu, Photoelectrocatalytic degradation of triazinecontaining
azo dyes at c-Bi2MoO6 film electrode under visible light irradiation (k > 420 nm), Environ. Sci. Technol. 41 (2007) 6802–6807.
[20] X. Zhao, Y. Zhu, Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis, Environ. Sci. Technol. 40 (2006) 3367–3372.
[21] M. Panizza, M. Delucchi, G. Cerisola, Electrochemical degradation of anionic surfactants, J. Appl. Electrochem. 35 (2005) 357–361.
[22]P.V. Nidheesh, R. Gandhimathi, Removal of Rhodamine B from aqueous solution using graphite–graphite electro-Fenton system, Desalin. Water Treat. (2013).
[23] A. Ozcan, Y. S_ahin, A.S. Koparal, M.A. Oturan, A comparative study on the efficiency of electro-Fenton process in the removal of propham from water, Appl. Catal. B: Environ. 89 (2009) 620–626.
[24] P.V. Nidheesh, R. Gandhimathi, Comparative removal of Rhodamine B from aqueous solution by electro-Fenton and electro-Fenton-like processes, CLEAN – Soil, Air, Water 41 (2013) 1–6.
[25] L. Cirیaco, C. Anjo, J. Correia, M.J. Pacheco, A. Lopes, Electrochemical degradation of ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta 54 (2009) 1464–1472.
[26] C. Flox, C. Arias, E. Brillas, A. Savall, K. Groenen-Serrano, Electrochemical incineration of cresols: a comparative study between PbO2 and boron-doped diamond anodes, Chemosphere 74 (2009) 1340–1347.
[27] M.A. Rodrigo, P. Caizares, A. Snchez-Carretero, C. Sez, Use of conductivediamond electrochemical oxidation for wastewater treatment, Catal. Today 151 (2010) 173–177.
[28] E. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias, Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes, Chemosphere 79 (2010) 605–612.
[29] E. Tsantaki, T. Velegraki, A. Katsaounis, D. Mantzavinos, Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode, J. Hazard. Mater. 207–208 (2012) 91–96.
[30] M. Panizza, M.A. Oturan, Degradation of alizarin red by electro-Fenton process using a graphite-felt, Electrochim. Acta 56 (2011) 7084–7087.
[31] B. Marselli, J. Garcی[185]a-Gomez, P.A. Michaud, M.A. Rodrigo, Ch. Comninellis, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc. 150 (2003) D79–D83.
[32] M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev. 109 (2009) 6541–6569.
[33] J. Rodriguez, M.A. Rodrigo, M. Panizza, G. Cerisola, Electrochemical oxidation of acid yellow 1 using diamond anode, J. Appl. Electrochem. 39 (2009) 2285–2289.
[34] X. Florenza, A.M.S. Solano, F. Centellas, C.A. Martinez-Huitle, E. Brillas, S. Garcia-Segura, Degradation of the azo dye acid red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products, Electrochim. Acta 142 (2014) 276–288.
[35] I. Sirés, E. Brillas, G. Cerisola, M. Panizza, Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes, J. Electroanal. Chem. 613 (2008) 151–159.
[36] M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochim. Acta 51 (2005) 191–199.
[37] M. Panizza, G. Cerisola, Electrocatalytic materials for the electrochemical oxidation of synthetic dyes, Appl. Catal. B – Environ. 75 (2007) 95–101.
[38] N. Oturan, E. Brillas, M.A. Oturan, Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode, Environ. Chem. Lett. 10 (2012) 165–170.
[39] G.D. Fang, D.D. Dionysiou, S.R. Al-Abed, D.M. Zhou, Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs, Appl. Catal. B – Environ. 129 (2013) 325–332.