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• High volume fraction of particulate 
interpenetrated phase magnesium-
steel shot composites fabricated with 
sintered steel shots using the preform 
and squeeze casting method. 

• The mechanical properties 
(compressive strength and hardness) 
of the composites were affected 
by steel shots reinforcement 
connectivity.

• Interface deboning and interparticle 
breaking are dominant damages in the 
composite’s fractures. 
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In this study, steel particles were used to reinforce the magnesium matrix. To fabricate the 
magnesium-steel particle composite,  steel particle preforms were made in different sizes; some 
were sintered at 1000 - 1200 ℃ and some without sintering. These preforms were preheated 
at 750 °C and then infiltrated with melted magnesium with the squeeze casting method. The 
microstructure of the preforms and the composites were investigated by SEM and optical 
microscope. Microhardness and compression tests were performed to investigate the mechanical 
behavior of the composites. The microstructure study showed the rigid connectivity between 
the steel particles in the interpenetrating phase composites. Also, hardness and compression 
test results showed higher hardness (61 VHN) and strength (218 MPa) for the composites with 
1mm steel particle size sintered at 1200 ℃. Hence, the composites with 3D-dimensionally 
interconnected steel particles show significant changes in their mechanical properties.
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1. Introduction 

Interpenetrating phase composites (IPCs) are 
fundamentally different from other composite materials due 
to the arrangement and geometry of their reinforcements. 
The composites consist of a reinforcing phase that is 
isolated or connected within a continuous matrix phase. The 
reinforcements and matrix phase’s dual connectivity and 
continuity microstructure generally change the composites' 
properties. Each phase offers its own benefits due to its 
complete continuity, and the continuous stiffer reinforcement 
phase has the most significant influence on the composite 
behavior [1-5].

Interpenetrating phase metal matrix composites are a type 
of metal matrix composite material whose reinforcements 
have 3-D dimensions and permanent connectivity in the 
composite, and this reinforced skeleton can improve the 
composite’s mechanical and thermophysical properties. 
These composites are fabricated by pure metallic and alloy 
matrix materials, such as aluminum, magnesium, titanium, 
and copper, with ceramics and metallic reinforcement 
particles [6-10]. Among these composites, magnesium metal 
matrix composites have a variety of applications in the 
transportation and biomedical industries due to their specific 
strength and biocompatibility. The particle characteristics 
and connectivity influence the microstructure of composites, 
particularly in IPCs composites. [11-19]. Hence, controlling 
these factors is essential for the properties of the composite. 

In IPCs composites with particle reinforcements, the 
particles contact each other with a permanent and solid 
bridge bonding. The reinforcements in IPCs composites 
with three-dimensional skeleton reinforcements through 
interpenetrated matrix have better mechanical properties 
than the traditional composites. The IPCs composites can 
be produced by different methods, such as solid, liquid, and 
vapor states. In the liquid state, squeeze casting is a suitable 
method to fabricate particulate metal matrix composites. In 
this method, the molten metal is infiltrated within porous 
preforms [20-23].

Due to their relatively unknown mechanical behavior, 
this research aims to study the effect of the steel particles’ 
connectivity on the mechanical behavior of the metal 
matrix composites. This study focuses on the compression 
and hardness behavior of magnesium-steel particle IPCs 
composites. The squeeze-casting infiltration route was used 
to produce these composites.

2. Experimental 

The materials used for the IPCs composite making were 
pure magnesium (99.99%) as the matrix and steel particles 

(1 wt% C, 0.9 wt% Si, 0.86 wt% Mn, and   0.02 wt% S) of 
different sizes (1, 1.5, 2, and 2.5 mm) as the reinforcement. 
The composites-making process was done in two steps. First, 
the steel particles’ green preforms were fabricated by the 
vibrations compaction method, with a 35 mm diameter and 
40 mm height. Then, the green compacted preforms were 
partially sintered at different temperatures (1000 °C, 1100 
°C, and 1200 °C) for 2 h at maximum temperature to make 
interconnected steel particles. Next, the composites with and 
without sintered preforms were fabricated using the squeeze 
casting infiltration process (Fig. 1). Finally, samples were 
cut from the composites to study microstructure, hardness, 
and compression behavior.

The selected sections of the as-cast composite were 
studied with an optical and SEM (KYKY, Model-EM3900) 
microscope. A Vickers hardness testing machine measured 
the microhardness of the composites. The compression 
standard test (H/D < 2.5) was conducted using a Universal 
testing machine (Instron, Model 4206) at a 1 mm/min speed 
and room temperature.

             
3. Results and discussion

3.1. Microstructures

The typical optical and SEM microstructure of the sintered 
preforms with different steel particle sizes are shown in 
Figs. 2 and 3. As can be seen, after sintering, the particles 
tend to connect by forming necks at contact points. These 
micrographs of the porous steel particles preform also show 
that particle and pore channels remain interconnected within 
the preform. Optical microstructure results (Fig. 4) showed 
no defects in the composites; hence, the squeeze-casting 
infiltration is a good method for producing magnesium-steel 
particle composites.

Also, the sintering process changed the particle shape 
and connectivity. Furthermore, sintering should eliminate 
the regions of the highest capillarity at the contact points of 
two touching particles and it is expected to reduce residual 
porosity in the IPCs composites.

3.2. Hardness

The VHN microhardness of the composites is shown 

Fig. 1. Schematic of the composites production process.

Steel particles preform Preform sintering process Squeeze casting process
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in Fig. 5. As can be seen, as the sintering temperature 
increases and steel particle size decreases, the hardness 
of the magnesium matrix increases. It seems that the 
sintering temperature of the harder phase increases their 
connectivity and affects the hardening of the matrix in the 
IPCs composites [19,22]. During the fabrication of the 
composite, thermal strain plastic deformation is hindered by 
the reinforcement connectivity, increasing the dislocation 
density of the magnesium matrix. Hence, the microhardness 
increases with connectivity for the same-sized steel particles 
and higher sintering temperatures.

3.3. Compression

The compression stress-strain curves of the composites 

are plotted in Figs. 6 to 9. As can be observed from the 
general trend of stress-strain curves, the composite strength 
increases as the steel particle sizes decrease and the sintering 
temperature increases. The IPC composites fabricated 
with high sintering temperature (1200 °C) preform 
showed high strength because of good three-dimensional 
connectivity between steel particles reinforcement. These 
particle connectivity arrangements in the composites affect 
compression behavior. Other researchers have also proved 
the effect of particle connectivity on the strength of IPCs 
composites [19-25]. 

The SEM microstructure of the composite fracture 
surfaces is given in Fig. 10. The fracture surfaces of the IPCs 

Fig. 2. Optical images of the sintered steel particles with different 
size preforms.

Fig. 3. SEM images of the microstructure of sintered steel particles 
with different size preforms.

Fig. 4. Optical microstructure of the composites with sintered steel 
particles, (a) 1 mm and (b) 2.5 mm.

Fig. 5. Microhardness Mg matrix-sintered steel particles size in the 
IPCs composites.
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composites showed interface deboning, and this mechanism 
causes the primary damage in the composites. Hence, 

Fig. 6. Stress-Strain curves of the composites with nonsintered steel 
particles.

Fig. 7. Stress-Strain curves of the IPCs composites with sintered 
steel particles at 1000 ℃.

Fig. 8. Stress-Strain curves of the IPCs composites with sintered 
steel particles at 1100 ℃.

Fig. 9. Stress-Strain curves of the IPCs composites with sintered 
steel particles at 1200 ℃.

Fig. 10. SEM images of the fracture surface of the IPCS composite with different steel particle sizes, (a) 1.5 mm and (b) 2 mm.
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resistance to breaking the steel particle interconnections was 
proposed to explain the higher compressive strength.
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4. Conclusion

The IPCs magnesium-steel particle composites showed 
higher compressive strength and hardness than those with 
no interpenetrating phases. The rigid skeleton of the steel 
particles in the composites resists deformation during applied 
loading and hence increases the mechanical properties of 
the composites. The IPCs composite with steel particles 
sintered at 1200 °C showed the highest compressive strength 
and hardness. Also, the fracture surfaces showed interface 
deboning damage.
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