Theoretical study of quantum and thermal properties of particles’ bound state in quantum disks

Document Type : Research Article

Author

Department of Engineering Sciences and Physics, Buein Zahra Technical University, Qazvin, Iran

Abstract

The present study aims to investigate the thermal properties of low-quantum structures (LQS) with a described non-central potential. Additionally, the study investigates the influence of relativistic parameters such as the constituent mass (effective mass) of particles and the effect of thermal properties. The magnitude of distortion of an LQS due to a non-central potential was found to have a profound effect on the system's quantum and thermal properties, which is crucial to understanding the behavior of practical quantum systems in an LQS. This paper studies the critical concepts in the fundamental optimization of mass and thermal properties of interactions in LQS based on canonical operators. It explores and analytically calculates the radial part of the Schrödinger equation at finite temperatures with two intertwined spaces using the normal ordering method in a combination of the Coulomb potential and the distortion potential. We provide analytical expressions for the ground state energy eigenvalues to define the zeroth approximation with the quantum and thermal effect and properties. Results showed that the energy of a system decreases with an increase in temperature and strength of the distortion.

Graphical Abstract

Theoretical study of quantum and thermal properties of particles’ bound state in quantum disks

Highlights

  • Exciton bound state interaction is described within non-central potential.
  • Schrodinger equation is presented based on the Sturmian function.
  • Eigenenergy value determined for different strengths of the distortion βd.
  • Distortion potential effect for a fixed quantum disk is calculated at finite temperature.

Keywords

Main Subjects


Copyright © 2023 The Author(s). Published by IROST.

[1] Shi, B., Qi, P., Jiang, M., Dai, Y., Lin, F., Zhanga, H., & Fang, Z. (2021). Exotic physical properties of 2D materials modulated by moiré superlattices. Materials Advances, 2(17), 5542-5559. https://doi.org/10.1039/D1MA00263E
[2] Manikandan, A., Chen, Y.-Z., Shen, C.-C., Sher, C.-W. Kuo, H.-C., & Chueh, Y.-L. (2019). Critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics. Progress in Quantum Electronics, 68, 100226. https://doi.org/10.1016/j.pquantelec.2019.100226
[3] Singh, K. J., Ahmed, T., Gautam, P., Sadhu, A. S., Lien, D.-H., Chen, S.-C., Chueh, Y.-L. & Kuo, H.-C. (2021).Recent advances in two-dimensional quantum dots and their applications. Nanomaterials, 11(6), 1549. 
https://doi.org/10.3390/nano11061549
[4] Garshasbia, S., Huangb, S., Valentac, J., & Santamouris, M. (2020). Can quantum dots help to mitigate urban overheating? An experimental and modeling study. Solar Energy, 206, 308-316. 
https://doi.org/10.1016/j.solener.2020.06.010
[5] Brunetti, M. N., Berman, O. L., Kezerashvili, R. Y. (2019). Optical properties of anisotropic magnetoexcitons in phosphorene. Physical Review B, 100(15), 155433. https://doi.org/10.1103/PhysRevB.100.155433
[6] Jahanshir, A. (2021). Quanto-relativistic background of strong electron-electron interactions in quantum dots under the magnetic field. Journal of Optoelectronical Nanostructures, 6(3), 1-24. 
https://doi.org/10.30495/JOPN.2021. 28742.1231
[7] Efros, A. L., & Brus, L. E. (2021). Nanocrystal quantum dots: From discovery to modern development. ACS Nano, 15(4), 6192-6210. https://doi.org/10.1021/acsnano.1c01399
[8] Masumoto, Y., & Takagahara, T. (2002). Semiconductor quantum dots: Physics spectroscopy and applications (1st ed.). Springer Berlin. https://doi.org/10.1007/978-3-662-05001-9
[9] Ghosh, D., Sarkar, K., Devi, P., Kim, K.-H., & Kumar, P. (2021). Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews, 135, 110391. https://doi.org/10.1016/j.rser.2020.110391
[10] Talwar, S. L., Lumb, S., & Prasad, V. (2022). Optical properties of hydrogenic impurity in a distorted quantum disk. The European Physical Journal Plus, 137, 175. https://doi.org/10.1140/epjp/s13360-022-02393-4
[11] a. Gambhir, M., & Prasad, V. (2021). Dependence of nonlinear optical properties on electrostatic interaction in an excitonic parabolic quantum dot in a static magnetic field. Journal of Modern Optics, 68(10), 542-554. 
https://doi.org/10.1080/09500340.2021.1927228
b. Chouef, S., Mommadi, O., Boussetta, R., Belamkadem, L., Hbibi, M., El Moussaouy, A., Vinasco, J. A., Duque, C. A., El Hadi, M., & Falyouni, F. (2022). Impact of applied temperature and hydrostatic pressure on the off-center donor spectrum in spherical quantum dot. Solid State Phenomena, 335, 31-41.  https://doi.org/10.4028/p-6h7el8
[12] Johnson, B. R., (1980). On a connection between radial Schrodinger equations for different power-law potentials. Journal of Mathematical Physics, 21, 2640-2647. https://doi.org/10.1063/1.524378
[13] De Guzman, J. A. T., Markevich, V. P., Coutinho, J., Abrosimov, N. V., Halsall, M. P., & Peaker, A. R. (2022).  Electronic properties and sructure of boron–hydrogen complexes in crystalline silicon. Solar RRL, 6(5), 2100459. https://doi.org/10.1002/solr.202100459
[14] Dineykhan, M., Efimov, G. V., Ganbold, G., & Nedelko, S. N. (1995). Oscillator representation in quantum physics (1st ed.). Springer Berlin. https://doi.org/10.1007/978-3-540-49186-6
[15] Avery, J. S. (1989). Spherical harmonics: Applications in quantum theory (2nd ed.). Springer.
[16] Lumb, S., Talwar, S. L., & Prasad, V. (2022). Hydrogenic impurity in a distorted quantum disk: Effects of hydrostatic pressure and temperature on the optical properties. The European Physical Journal Plus, 137, 672. 
https://doi.org/10.1140/epjp/s13360-022-02882-6
[17] Gerlach, B., Wüsthoff, J., Dzero, M. O., & Smondyrev, M. A. (1998). Exciton binding energy in a quantum well, Physical Review B, 58(16), 10568-10577. https://doi.org/10.1103/PhysRevB.58.10568
[18] Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89(11), 5815-5875. https://doi.org/10.1063/1.1368156